Physics 3:

Particle Physics

Lecture 8: The Weak Force Continued March 6th 2008

- * Fermi Theory
- * Beta Decay
- * Muon and tau decay
- * Lepton Universality
- * Weak interactions of Quarks
- * Weak Decays of Hadrons

Fermi Theory

Weak Interactions at Low Momentum Transfer

For muon decay, and many other weak processes:

$$\mathcal{M} \propto rac{g_w^2}{\left(ar{q}^2 - m_W^2
ight)}$$

At low momentum transfer $\underline{q}^2 \ll m_W^2$ $\mathcal{M} o \propto \frac{g_w^2}{m_W^2}$

$${\cal M}
ightarrow \propto rac{g_w^2}{m_W^2}$$

Introduce Fermi coupling constant:
$$G_F \propto rac{g_w^2}{m_W^2} ~~G_F = rac{\sqrt{2}\,g_w^2}{8\,m_W^2}$$

- Dimension [E]⁻²
- From experimental measurements: $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$

Measurements of
$$G_F \& M_W \Rightarrow g_w = 0.66 \Rightarrow \alpha_w = \frac{g_w^2}{4\pi} = \frac{1}{29} > \alpha_{\rm EM} = \frac{1}{137}$$

• Recall, from problem sheet 2, Q4, range of W boson:
$$\Delta x \approx \frac{\hbar}{\Delta p} = \frac{\hbar}{m_W c} = 0.002~{\rm fm}$$

Weak interaction not intrinsically weak - appears weak due to large boson masses.

Beta Decay

Weak Nuclear Decay

$$\beta^+$$
 decay $(A,Z) \rightarrow (A,Z-1) + e^+ + v_e$

$$\beta^-$$
 decay $(A,Z) \rightarrow (A,Z+1) + e^- + \overline{\nu}_e$

Nuclear Interpretation

$$n \rightarrow p e^{-\overline{v}_e}$$

Continuous energy spectrum of $e^{\pm} \Rightarrow$ at least two decay products. This led Pauli to postulate the existence of the neutrino.

Modern quark level picture

Decay mediated by exchange of virtual W^{\pm} boson

$$\mathbf{d} \rightarrow \mathbf{u} \ W$$

$$\rightarrow e^{-}\overline{v}_{e}$$

3

Fermi's Golden Rule

Review from Lecture 1, Slide 13

The rate at which a decay or a scattering proceeds is given by **Fermi's Golden Rule**:

Where:

$$T_{i \to f} = \frac{2\pi}{\hbar} |\mathcal{M}|^2 \, \rho$$

- M is the matrix element we will see how these are calculated for different processes in future lectures.
- $\bullet \rho$ is the density of states we will consider this only for some key processes.
- T is related to the cross section of scattering, σ .

e.g.
$$\sigma(e^+e^-\rightarrow \mu^+\mu^-) \propto |\mathcal{M}(e^+e^-\rightarrow \mu^+\mu^-)|^2$$
.

• T is related to the inverse lifetime of a decay, τ .

e.g.
$$\tau(\mu^- \rightarrow e^- \overline{v}_e v_\mu) \propto 1/|\mathcal{M}(\mu^- \rightarrow e^- \overline{v}_e v_\mu)|^2$$
.

Decay Modes

Review from Lecture 2, Slide 9

Particles can have more than one decay mode. e.g. The K_S meson decays 99.9% of the time in one of two ways:

$$K_S \to \pi^+ \pi^-, K_S \to \pi^0 \pi^0$$

• Each decay mode has its own matrix element, \mathcal{M} . Fermi's Golden Rule gives us the partial decay width for each decay mode:

$$\Gamma(K_S \to \pi^+ \pi^-) \propto |\mathcal{M}(K_S \to \pi^+ \pi^-)|^2 \qquad \Gamma(K_S \to \pi^0 \pi^0) \propto |\mathcal{M}(K_S \to \pi^0 \pi^0)|^2$$

• The total decay width is equal to the sum of the decay widths for all the allowed decays.

$$\Gamma(K_S) = \Gamma(K_S \to \pi^0 \pi^0) + \Gamma(K_S \to \pi^+ \pi^-)$$

• The branching ratio, BR, is the fraction of time a particle decays to a particular final state:

$$BR(K_S \to \pi^+ \pi^-) = \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_S)} \quad BR(K_S \to \pi^0 \pi^0) = \frac{\Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_S)}$$

Muon Decay

How does a muon μ^- decay?

• Must decay into lighter particles: e^- , γ , ν . In particular, all hadrons are heavier than m_{μ} .

 L_e, L_μ, L_τ conservation \Rightarrow only lowest order decay is $\mu^- \rightarrow e^- \overline{\nu}_e \nu_\mu$

$$L_e, L_\mu, L_\tau$$
 conservation \Rightarrow only lowest order decay is $\mu^- \to e^- \bar{\nu}_e \, \nu_\mu$ g_W

Maximum four-momentum transferred by W boson is $\underline{q} = (m_\mu - m_{\nu_\mu})c$

$$\Gamma(\mu^- \to e^- \bar{\nu}_e \nu_\mu) \propto |\mathcal{M}|^2 \propto \frac{g_W^4}{(\underline{q}^2 - m_W^2)^2} \to \frac{g_W^4}{m_W^4} \propto G_F^2$$
 $\mathcal{M} \propto \frac{g_W^2}{\underline{q}^2 - m_W^2}$

Only 1 decay mode:

• Partial decay width, $\Gamma(\mu^- \to e^- \bar{\nu}_e \nu_\mu) = \text{total decay width}$, $\Gamma_\mu = \hbar/\tau_\mu \propto G_F^2$

To calculate a value for Γ_{μ} , need to know the density of states, ρ . Use dimensional analysis:

- ightharpoonup Γ has dimensions of energy, [E];
- \rightarrow G_F^2 has dimensions $[E]^{-4}$

To balance dimensions, use \emph{m}_{μ} (only other energy/mass in problem): $\Gamma_{\mu}=K\,G_F^2\,m_{\mu}^5$ where K is a dimensionless constant

(full calculation gives
$$\Gamma_\mu = G_F^2 \, m_\mu^5/(192 \, \pi^3)$$
)

Tau Decay

 $m_{\tau} = 1.777 \text{ GeV/c}^2 > m_{\mu}, m_{\pi}, m_{\rho}, ...$

More than one final state possible.

• e.g. $\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$, $\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$, $\tau^- \rightarrow \pi^- \overline{\nu}_\mu \nu_\tau$

Decay Mode	BR
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$	17.8%
$\tau^-{ ightarrow}\mu^-\overline{v}_\muv_ au$	17.4%
$\tau^ \rightarrow$ hadrons $+\nu_{\tau}$	64.7%

$$\mathcal{M}(au o e
u_e
u_ au) \propto rac{e^-}{\underline{q}^2}$$

$$\mathcal{M}(au
ightarrow \mu
u_{\mu}
u_{ au}) \propto rac{g_W^2}{\underline{q}^2 - m_W^2}$$

 $\tau^- \to e^- \bar{\nu}_e \nu_\tau$ and $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$ have same matrix element as $\mu^- \to e^- \bar{\nu}_e \nu_\tau$:

$$\Gamma(\mu^- \to e^- \bar{\nu}_e \nu_\mu) = K G_F^2 m_\mu^5$$

$$\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_\tau) = K G_F^2 m_\tau^5$$

• From measured branching ratios:

$$\Gamma_{\tau} = 0.178 \Gamma(\tau^{-} \to e^{-} \bar{\nu}_{e} \nu_{\tau})$$

$$\Gamma_{\mu} = \Gamma(\mu^{-} \to e^{-} \bar{\nu}_{e} \nu_{\mu})$$

$$\frac{\Gamma(\tau^- \to e^- \bar{\nu}_e \, \nu_\tau)}{\Gamma(\mu^- \to e^- \bar{\nu}_e \, \nu_\tau)} = \frac{0.178 \, \Gamma_\tau}{\Gamma_\mu} = \frac{0.178 \, \tau_\mu}{\tau_\tau} = \frac{m_\tau^5}{m_\mu^5}$$

7

Lepton Universality

- $\bullet \text{ We've shown} \, \Gamma_\mu = K \, G_F^2 \, m_\mu^5 \quad \text{(} \, \Gamma_\mu = G_F^2 \, m_\mu^5/(192 \, \pi^3) \text{)} \, \text{ and } \, \frac{m_\tau^5}{m_\mu^5} = \frac{0.178 \, \tau_\mu}{\tau_\tau}$
- Experimental measurements:
 - $\tau_{\mu} = 2.19703 \times 10^{-6} \text{ s}$ $m_{\mu} = 105.65837 \text{ MeV}/c^2$ $m_{\tau} = 1777.0 \text{ MeV}/c^2$
 - used to extract G_F (and g_W) $\Rightarrow G_F = 1.16637(1) \times 10^{-5} \,\mathrm{GeV^{-2}}$
- Predict the lifetime of the tau-lepton: $\tau_\tau = {\rm BR}(\tau \to e^- \nu_e \nu_\tau) \, \tau_\mu \, \frac{m_\mu^5}{m_\tau^5} = 2.91 \times 10^{-13} \; {\rm s}$
- Compare to measured $\tau_{\tau} = (2.906 \pm 0.011) \times 10^{-13} \, \text{s}$

The relationship between the tau and muon lifetimes illustrates lepton universality.

- Coupling of to W-boson to all leptons is equal = g_W
- electrons, muons and taus all interact identically
- interact with the same bosons with same coupling strength

Hadronic Decays of Tau

In general, any vertex W-(Q=+2/3 e quark)-(Q=-1/3 e quark) is valid.

In au decay: the virtual $extit{W}^-$ boson can decay into $\overline{\mathbf{u}} + \mathbf{d}$ or $\overline{\mathbf{u}} + \mathbf{s}$

• Other pairs of quarks form hadrons which are too heavy

$$\mathcal{M}(\tau \to \bar{\mathrm{u}}\mathrm{d}\nu_{\tau}) \propto \frac{g_W^2 V_{\mathrm{ud}}}{\underline{q}^2 - m_W^2}$$

Coupling at W-u-d W-e-v W-u-s vertices not equal g_WV_{ud} g_W g_WV_{us}

 $\mathcal{M}(\tau \to \bar{\mathrm{u}}\mathrm{s}\nu_{\tau}) \propto \frac{g_W^2 V_{\mathrm{us}}}{q^2 - m_W^2}$

- g_WV is coupling to one colour of quark
- Γ is enhanced number of quark colours, N_c
- $\bullet \ \ \underline{\underline{q}}^2 \ll m_W^2$

e.g.
$$\Gamma(au^- o K^-
u_ au)pprox \Gamma(au o ar{
m u}{
m s}
u_ au)\propto N_c rac{g_W^4V_{
m us}^2}{m_W^4}$$

(would need to know density of states to fully calculate Γ , depends on both m_{τ} and m_{K})

9

Weak Interactions of Quarks

In general, any vertex W-(Q=+2/3 e quark)-(Q=-1/3 e quark) is valid.

ullet W-boson coupling to quarks suppressed by a flavour-dependent factor V or $V_{
m CKM}$

(Known as the "CKM matrix" - values from experimental measurements)

$V_{\rm ud} = 0.974$	$V_{\rm us} = 0.227$	$V_{\rm ub} = 0.004$
$V_{\rm cd} = 0.230$	$V_{\rm cs} = 0.972$	$V_{\rm cb} = 0.042$
V _{td} =0.008	V _{ts} =0.041	$V_{\text{tb}} = 0.999$

V _{ud} =0.974	$V_{\rm us} = 0.227$	V _{ub} =0.004
$V_{\rm cd} = 0.230$	$V_{\rm cs} = 0.972$	$V_{\rm cb} = 0.042$
V _{td} =0.008	V _{ts} =0.041	V _{tb} =0.999

Largest couplings are within a generation:

$$d \leftrightarrow u \quad s \leftrightarrow c \quad b \leftrightarrow t$$

Weak Hadron Decays

As the strong and electromagnetic forces conserve strangness, charmness etc. (S, C, B) ... lightest hadrons with non-zero S, C, B quantum numbers must decay by weak force!

For interactions of hadrons always consider the interactions of the constituent quarks.

• e.g. $B^- \rightarrow D^0 \mu^+ \nu_\mu$

• predicted ratio of the partial decay widths:

$$\frac{\Gamma(K^+ \to \mu^+ \nu_\mu)}{\Gamma(\pi^+ \to \mu^+ \nu_\mu)} = \frac{V_{\rm us}^2}{V_{\rm ud}^2} = 0.055 \qquad \begin{array}{c} {\it Confirmed} \\ {\it experimentally!} \end{array}$$

Summary

The weak force acts on all quarks and leptons.

Two massive bosons propagate the weak interaction: W^{\pm} and Z^{0} .

W[±]-boson interactions changes fermion

$$e^- \leftrightarrow v_e \quad \mu^- \leftrightarrow v_\mu \quad \tau^- \leftrightarrow v_\tau$$
 $(Q=+2/3 \ e \ quark) \quad \leftrightarrow \quad (Q=-1/3 \ e \ quark)$

- quark coupling at W^{\pm} vertex: $g_W V_{\text{CKM}}$
- lepton coupling at W^{\pm} vertex: g_W
- W^{\pm} propagator term: $1/(q^2 m_W^2)$

 Z^0 -boson interactions conserve the fermion flavour

 Z^{0} -boson propagator term: $1/(\underline{q}^{2}-m_{Z}^{2})$

 Z^0 -boson interaction is connected to electromagnetic interaction

Weak interactions are characterised by:

- Long lifetimes 10⁻¹³ 10³ s
- Small cross sections 10⁻¹³ mb

Lepton interactions are universal.

Quarks interactions not universal. W-(Q=+2/3 e quark)-(Q=-1/3 e quark)coupling is $g_W V_{\rm CKM}$, where $V_{\rm CKM}$ depends on flavour of quark

> Largest couplings within a generation: Wud, Wcs, Wtb

Fermi theory describes W-boson interactions at low momentum transfer $\underline{q}^2 \ll m_W^2$

Described by Fermi constant: $G_F \propto g_w^2/m_W^2$