Particle Physics: Problem Sheet 2 More on QED, Accelerators & Detectors, Quark & Leptons

- 1. Please make sure you have done questions 10 and 11 on last week's question sheet.
- 2. Draw the lowest order Feynman diagrams for our favourite process: $e^+e^- \rightarrow \mu^+\mu^-$. Discuss the corresponding Matrix element, $\mathcal{M}(e^+e^- \rightarrow \mu^+\mu^-)$.

A similar process can be used to create pairs of quarks, $e^+e^- \to q\overline{q}$. Discuss the corresponding Matrix element for this process, $\mathcal{M}(e^+e^- \to q\overline{q})$.

What can you say about the ratio of the cross sections,

$$\frac{\sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}?$$

Please note: this is not the whole answer to the problem! We'll look more at this process in the coming weeks.

- 3. Draw the lowest and second order Feynman diagrams for electron-muon scattering $e^-\mu^- \rightarrow e^-\mu^-$. Discuss the corresponding matrix element, \mathcal{M} , and cross section for the lowest order. Estimate the contribution of the second order diagrams to the cross section.
- 4. Some of what we have learned about QED is applicable to the weak force. The weak force can be propagated by the W^{\pm} -boson with mass $m_W = 80 \text{ GeV}/c^2$. For example, nuclear beta decay can be described as $d \to uW^-$, followed by the decay of the W^- into $e^-\bar{\nu}_e$.

Estimate the maximum range of the weak force propagated by the W-boson.

What does the Yukawa potential look like for exchange of a W-boson? The coupling of the W-boson, is written as g_W .

5. In a synchrotron accelerator, why do charged particles loose energy? The energy loss per turn is:

$$\Delta E = \frac{q^2 \beta^3 \gamma^4}{3\epsilon_0 \rho}$$

The LEP and LHC synchrotrons were built in the same tunnel ($\rho_{\text{LEP}} = \rho_{\text{LHC}} = 4300 \text{ m}$). At LEP the energy of the electrons was $E_e = 45.2 \text{ GeV}$; at LHC the energy of the protons will be $E_p = 7000 \text{ GeV}$. What is the ratio of the energy loss at LEP and LHC?

- 6. Describe (briefly) how an electron, a charged pion and a muon appear in a typical collider detector.
- 7. Cosmic ray muons are produced at the top of the atmosphere. As they travel through matter, muons loose energy to ionisation. The energy loss for muons can be described by $dE/dx \approx 2.0 \text{ MeVg}^{-1} \text{cm}^2$.

How much energy does a muon with three-momentum, $p_{\mu} = 5 \text{ GeV}/c$ lose by ionisation before reaching sea level?

Hint: the total energy loss, $\Delta E = dE/dx \times x$, where x is the thickness of the atmosphere in g/cm². The mass thickness of the atmosphere can be inferred from the pressure at sea level, P = 1 atm = 10⁵ kgm⁻¹s⁻², by assuming the density to be constant.

- 8. What quantum numbers are associated with leptons? Are they conserved in strong, weak and electromagnetic interactions?
- 9. What quantum numbers are associated with quarks? Are they conserved in strong, weak and electromagnetic interactions?
- 10. What are the charge, isospin, strangeness and baryon quantum numbers for the \bar{u} , \bar{d} and \bar{s} quarks? What are the quantum numbers of the lambda anti-baryon, $\bar{\Lambda}^0$, and of the antiproton, \bar{p} ? Make sure you understand these in terms of quark content!