<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><list-item><list-item>

Quantum Chromodynamics (QCD)

• QCD is the quantum description of the strong force.

QED	QCD	
quantum theory of the electromagnetic interactions	quantum theory of the strong interactions	
mediated by the exchange of virtual photons	mediated by the exchange of gluons	
acts on all charged particles	acts on quarks only	
couples to electrical charge	couples to colour charge	
coupling strength $\propto e \propto \sqrt{\alpha}$	coupling strength $\propto g_S \propto \sqrt{\alpha_S}$	
$QED \qquad q$ $q \rightarrow q$ $q \rightarrow q$ $\alpha = e^{2}/4\pi \sim 1/137 \qquad \gamma$	$QCD \qquad q \qquad $	

Colour Confinement

Experimentally we do not see free quarks: quarks are confined within hadrons

- Gluons attract each other: they self interact
- Gluon-gluon interaction pulls the colour field lines into a narrow tube.
- Potential increases linearly with distance: V(r) = kr
- Infinite energy is required to separate two quarks.

COLOUR CONFINEMENT

Colour confinement is a direct consequence of gluon self-interactions

Total potential:

$$V_{\rm QCD}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

Force required to separate quarks:

$$F_{
m QCD} = -rac{dV}{dr} = rac{4}{3}rac{lpha_s}{r^2} + k$$

At large distances $F \approx k \approx 100 \text{ GeV/fm} = 160,000 \text{ N} \parallel \parallel$

QCD QED ā Colour Electric field lines

- In QCD the interaction strength is α_s also not really a constant.
- Quark emit gluons: which can form virtual quark anti-quark pairs.
- However the gluons themselves also carry colour charge, which effects the screening.

- α_s decreases at high energies! $\Leftrightarrow \alpha_s$ increases at large distances!
- At low energies the coupling constant becomes large, $\alpha_s \sim 1$. We cannot use perturbation theory to calculate cross sections!
- The understanding of this phenomena won the Nobel prize in 2004.

50 100 200 Energy, GeV

QCD Summary			
QCD: Quantum Chromodymanics is the quantum description of the strong force. Only quarks feel the strong force.	Gluons are the propagator of the strong force $q = \frac{q}{\bar{q}}$		Quarks and gluons carry colour charge. Gluons self-interact:
 Electromagnetic coupling constant <i>a</i> decreases as a charged particles get further apart. Strong coupling constant <i>a</i>_S increases as further apart quarks become. 		Hadrons can be described as consisting of partons: quarks and gluons, which interact independently	
Colour Confinement energy required to separate quarks $\rightarrow \infty$ quarks are confined to hadrons		Quarks and gluons produced in collisions hadronise: hadrons are produced. The decay products of the hadrons appear in the detector as jets .	