Subatomic Physics:

Particle Physics

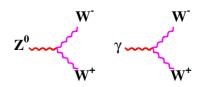
Lecture 7: Introduction to the Weak Force
November 24th 2009

- * Weak interactions
- * Charged and neutral current
- * Feynman Rules for weak force

Introduction to the Weak Force

The weak force is responsible for some of the most important phenomena:

- Decays of the muon and tau leptons
- Neutrino interactions
- Decays of the lightest mesons and baryons
- Radioactivity, nuclear fission and fusion


Characteristics of Weak Processes:

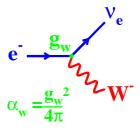
- Long lifetimes 10^{-13} 10^3 s
- Small cross sections 10⁻¹³ mb

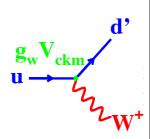
Boson	₩±	Z^0
Mass GeV/c ²	80.4	91.2
charge, e	±1	0
spin	1ħ	1ħ

Weak Force is propagated by massive W^+ , W^- and Z^0 bosons

- The interactions of W^{\pm} and Z^{0} are different (related by symmetry of the weak interaction)
 - W^{\pm} and Z^{0} can interact with each other
 - W^{\pm} and γ can interact (as W^{\pm} bosons are charged)

Weak Vertices

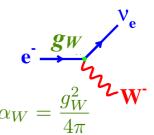

QED	₩-boson
mediated by the exchange of virtual photons	mediated by the exchange of $\it W$ boson
acts on all charged particles	acts on all quark and leptons
coupling strength $\propto e \propto \sqrt{\alpha}$	coupling strength $\propto g_W \propto \sqrt{\alpha_W}$
propagator term: $1/(q^2-m_{\gamma}^2)=1/q^2$	propagator term: $1/(q^2-m_W^2)$
For many processes: $\mathcal{M}_{\sim} e^2/q^2$	For many processes: $\mathcal{M} \propto g_W^2/(q^2-m_W^2)$
e e h	e gw Ve


Recall: matrix element, \mathcal{M} , is the amplitude of a process. Scattering cross section, $\sigma \propto \mathcal{M}^2$. Decay width, $\Gamma \propto \mathcal{M}^2$

3

Interactions of the W^{\pm} boson

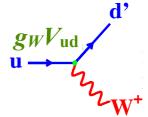
- Known as "charged current interactions"
- W^{\pm} boson interacts with all fermions (all quarks and leptons)
- Charged current changes the flavour of the fermion:
 - e.g. electron emitting an W-boson can't remain an electron violates conservation of charge!
 - an electron turns into a electron neutrino
 - an up quark turns into a down quark and vice versa!
- Coupling strength at every vertex ∝ gw
- ullet Propagator term describing the W-boson $\propto \overline{\left(\underline{q}^2-m_W^2\right)}$
 - \underline{q} is the four-momentum transferred by $\overline{\mathsf{th}}\mathsf{e}\ W\mathsf{-boson}$



Allowed Flavour Changes

At a W-boson vertex:

• Lepton numbers: L_e , L_μ and L_τ , is conserved: Allowed lepton flavour changes: $e^- \leftrightarrow v_e \quad \mu^- \leftrightarrow v_\mu \quad \tau^- \leftrightarrow v_\tau$

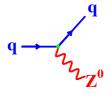

- Total Quark Number, N_q , is conserved
- Individual quark flavour numbers: $N_{\rm u}$, $N_{\rm d}$, $N_{\rm s}$, $N_{\rm c}$, $N_{\rm b}$, $N_{\rm t}$ are **not** conserved

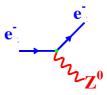
Allowed quark flavour changes:

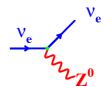
$$(Q=+2/3 e quark) \leftrightarrow (Q=-1/3 e quark)$$
$$(d s b) \leftrightarrow (u c t)$$

- Each of the nine possible quark flavour changes has a different coupling strength: e.g. gwV_{ud} for u to d quarks (Vs are terms in CKM matrix V_{CKM} more next lecture)
- Main quark flavour changes are within a generation:

$$d \leftrightarrow u \quad s \leftrightarrow c \quad b \leftrightarrow t$$

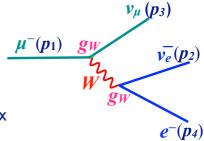

Ę


Interactions of the Z^{0} boson


- Known as "neutral current interactions"
- Acts on all fermions (all quarks and leptons)
- Neutral current conserves flavour of the fermion
- No allowed fermion flavour changes

 Coupling strength depends on fermion flavour - we won't consider this in this course

Anywhere a photon could be exchanged a \mathbb{Z}^0 boson can be exchanged. (Almost vice-versa, except \mathbb{Z}^0 boson also has neutrino interactions too!)


Electromagnetic and weak neutral current interactions are linked!

Feynman Rules for Weak Interaction

How to calculate the matrix element, \mathcal{M} , for a weak decay or scattering

e.g. decay of a muon $\mu^- \rightarrow e^- \nu_\mu \nu_e^-$

- Draw the Feynman diagram for the process
 - give a four momentum for each particle

- Check quantum numbers conservation at every vertex
 - For both W and Z: L_e , L_μ and L_τ , N_q , Q
 - For Z only: no change of quark or lepton flavour
- Is energy and momentum conserved? For decay: $\sum m_{
 m initial} > \sum m_{
 m final}$
- Write down the coupling at each vertex: gw (for W)
- Work out four-momentum transferred by boson: $\underline{\underline{q}} = (\underline{\underline{p}}_3 \underline{\underline{p}}_1) = (\underline{\underline{p}}_4 + \underline{\underline{p}}_2)$
- ullet Write down the **propagator term** for each boson: $1/({ar q}^2-m_{
 m boson}^2)$
- ${\cal M}$ is proportional to product of vertex and propagator terms: ${\cal M} \propto \frac{g_w^2}{(\underline{q}^2-m_W^2)}$

7

Summary

The weak force acts on **all** quarks and leptons.

Two **massive** bosons propagate the weak interaction: W^{\pm} and Z^{0} .

Weak interactions are characterised by:

- Long lifetimes 10⁻¹³ 10³ s
- Small cross sections 10⁻¹³ mb

W[±]-boson interactions changes fermion flavour

$$e^- \leftrightarrow v_e \quad \mu^- \leftrightarrow v_\mu \quad \tau^- \leftrightarrow v_\tau$$

(Q=+2/3 e quark) \leftrightarrow (Q=-1/3 e quark)

- ullet quark coupling at W^{\pm} vertex: $g_W V_{
 m CKM}$
- ullet lepton coupling at W^{\pm} vertex: g_W
- $extit{W}^{\pm}$ propagator term: $\dfrac{1}{(\underline{q}^2-m_W^2)}$

 Z^0 -boson interactions conserve the flavour of the fermion

• Z^{θ} -boson propagator term:

$$\frac{1}{(\underline{q}^2 - m_Z^2)}$$

 Z^{θ} -boson interactions are strongly linked to the electromagnetic interaction