

Tools of Quantum Mechanics

Review from lecture 2

- Each particle can be described as a quantum state, $|\phi\rangle$
- The electromagnetic, weak and strong forces acting on these states can be represented by (three different) quantum operators, \hat{O}
- Rates of interactions such as **particle lifetimes** and **scattering cross sections** are given by **Fermi's Golden rule:**
- Transition between an initial state $|\phi_i\rangle$ and a final state $|\phi_f\rangle$ are related to the matrix element $\mathcal{M} = V_{fi} = \langle \phi_f | \hat{O} | \phi_i \rangle$:

Transition probability,
$$T = \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho$$

- *T* is related to the cross section of scattering, σ . e.g. $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \propto |\mathcal{M}(e^+e^- \rightarrow \mu^+\mu^-)|^2$.
- *T* is related to the inverse lifetime of a decay, τ . e.g. $\tau(\mu^- \rightarrow e^- v_e^- v_\mu) \propto 1/|\mathcal{M}(\mu^- \rightarrow e^- v_e^- v_\mu)|^2$.

ρ is the denisty of final states: the more final states are allowed the faster the process will happen

Decay Modes

Review from lecture 2

5

Particles can have more than one **decay mode**. e.g. The K_S meson decays 99.9% of the time in one of two ways:

$$K_S \to \pi^+ \pi^-, K_S \to \pi^0 \pi^0$$

• Each decay mode has its own matrix element, \mathcal{M} . Fermi's Golden Rule gives us the **partial decay width** for each decay mode:

 $\Gamma(K_S \to \pi^+ \pi^-) \propto |\mathcal{M}(K_S \to \pi^+ \pi^-)|^2 \qquad \Gamma(K_S \to \pi^0 \pi^0) \propto |\mathcal{M}(K_S \to \pi^0 \pi^0)|^2$

• The **total decay width** is equal to the sum of the decay widths for all the allowed decays.

$$\Gamma(K_S) = \Gamma(K_S \to \pi^0 \pi^0) + \Gamma(K_S \to \pi^+ \pi^-)$$

• The **branching ratio**, **BR**, is the fraction of time a particle decays to a particular final state:

$$BR(K_S \to \pi^+ \pi^-) = \frac{\Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_S)} \quad BR(K_S \to \pi^0 \pi^0) = \frac{\Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_S)}$$

$$\begin{array}{l} \textbf{But on Lease by the particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only decay into lighter particles: } e^{-}, \gamma, \nu. \\ \textbf{A muon can only constraint the partial matrix is a dimensioned by W boson is } e^{-}, e^{-}, \nu_e \nu_\mu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \nu_\mu, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \mu_{\mu}, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \mu_{\mu}, \nu \\ \textbf{A muon four-momentum transferred by W boson is } e^{-}, e^{-}, e^{-}, \mu_{\mu}, \nu \\ \textbf{A muon four error endowing the error endowin$$

Lepton Universality

- We've shown $\Gamma_{\mu} = K G_F^2 m_{\mu}^5$ ($\Gamma_{\mu} = G_F^2 m_{\mu}^5/(192 \, \pi^3)$) and $\frac{m_{\tau}^5}{m_{\mu}^5} = \frac{0.178 \, \tau_{\mu}}{\tau_{\tau}}$
- Experimental measurements:
 - $\tau_{\mu} = 2.19703 \times 10^{-6}$ s $m_{\mu} = 105.65837$ MeV/ c^2 $m_{\tau} = 1777.0$ MeV/ c^2
- used to extract G_F (and g_W) $\Rightarrow G_F = 1.16637(1) \times 10^{-5} \,\text{GeV}^{-2}$

• Predict the lifetime of the tau-lepton:

$$\pi_{\tau} = \text{BR}(\tau \to e^{-}\nu_{e}\nu_{\tau}) \tau_{\mu} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} = 2.91 \times 10^{-13} \text{ s}$$

• Compare to measured $\tau_{\tau} = (2.906 \pm 0.011) \times 10^{-13} \, \mathrm{s}$

The relationship between the tau and muon lifetimes illustrates **lepton universality**.

- Coupling of to W-boson to all leptons is equal = g_W
- electrons, muons and taus all interact identically
- interact with the same bosons with same coupling strength

Electroweak Theory

We've seen already that wherever a γ boson can be exchanged a Z can also be exchanged:

- The weak and electromagnetic force are linked.
- At short distances (or high energies) the strength of the electromagnetic force and the weak force are comparable. Can be related by a parameter, $\sin \theta_W$

$$e = g_W \sin \theta_W$$

The weak and electromagnetic interactions are manifestations of a underlying force: **the electroweak force**.

- Couplings of the γ , W (and Z) bosons are related: $e = g_W \sin \theta_W$
- Mass of the \emph{W} and \emph{Z} bosons are related: $m_Z^2 = m_W^2/{\cos^2 heta_W}$

Just three fundamental parameters required to describe:

- couplings of W, Z and γ to quarks and leptons
- masses of the W, Z, γ bosons
- interactions of the W, Z, γ bosons with each other

Normally use three most accurately measured parameters $e.g. e, G_F, m_Z$

Number of Neutrinos

Total width of the Z-boson (Γ_Z) is sum of all partial widths: $\Gamma_Z = \Gamma(Z \to q\bar{q}) + \Gamma(Z \to e^+e^-) + \Gamma(Z \to \mu^+\mu^-) + \Gamma(Z \to \tau^+\tau^-) + N_{\nu} \Gamma(Z \to \nu\bar{\nu})$ LEP directly measured:

- partial widths: $\Gamma(Z \rightarrow e^+e^-)$, $\Gamma(Z \rightarrow \mu^+\mu^-)$, $\Gamma(Z \rightarrow \tau^+\tau^-)$, $\Gamma(Z \rightarrow hadrons) = \Gamma(Z \rightarrow q\bar{q})$
- total width, Γ_Z

Cannot measure $\Gamma(Z \rightarrow v v)$ directly as neutrinos leave no signal in the detector.

- Can predict $\Gamma(Z \rightarrow v \overline{v})$ using $\mathcal{M}(Z \rightarrow v \overline{v})$
- Use prediction & measurements to find number of neutrinos contributing to Γ_{Z}
- N_v=2.999±0.011

Consistent with exactly three neutrinos!

⇒ Gives us confidence that there are exactly three generations of quarks and leptons

Summary				
The weak force acts on all quarks and leptons. Two massive bosons propagate the weak interaction: W^{\pm} and Z^{0} .	 Weak interactions characterised by: Long lifetimes 10⁻¹³ - 10³ s Small cross sections 10⁻¹³ mb 			
At low energies, virtual <i>W</i> and <i>Z</i> bosons responsible for lepton and lightest hadron decays and neutrino scatterings. Fermi theory describes <i>W</i> -boson interactions at low boson momentum transfer $\underline{q}^2 \ll m_W^2$ Described by Fermi constant: $G_F \propto g_w^2/m_W^2$	Lepton interactions are universal. Quarks interactions not universal: W-(Q=+2/3 quark)-(Q=-1/3 quark) coupling is $g_W V_{\rm CKM}$, where $V_{\rm CKM}$ depends on flavour of quark Largest couplings within a generation: Wud, Wcs, Wtb			
At high energies colliders can produce real W and Z bosons for study. Studies of Z boson decays suggest only three generations of quarks and leptons.	Electromagnetic & weak are manifestations of a single unified electroweak interaction. (just 3 parameters describe interaction!)			

Standard Model Interactions			
QED	QCD	Weak Neutral Current	Weak Charged Current
quantum theory of EM interactions	quantum theory of strong interactions	quantum theory of	weak interactions
mediated by exchange of virtual photons	mediated by exchange of gluons	mediated by exchange of Z bosons	mediated by exchange of <i>W</i> bosons
acts on all charged particles	acts on quarks only	acts on all quarks and leptons	
couples to electric charge	couples to colour charge	does not change quark or lepton flavour	changes quark and leptons flavours
coupling strength $\sim e$	coupling strength $\propto g_S$		coupling strength $\propto g_W$
propagator: $\frac{1}{\underline{q}^2}$	propagator: $\frac{1}{\underline{q}^2}$	propagator: $\frac{1}{(\underline{\underline{q}}^2 - m_Z^2)}$	propagator: $\frac{1}{(\underline{q}^2 - m_W^2)}$
$e^{-\frac{e}{\gamma}}$ $q^{\frac{Qe}{\gamma}}$ $q^{\frac{Qe}{\gamma}}$	q g g g	e, v_e ν_e ν_e ν_e q ν_z^0	$e^{-} \xrightarrow{g_{w}} V_{e}$ $u \xrightarrow{g_{w}V_{ckm}} V_{W^{+}}$