Subatomic Physics: Particle Physics

Lecture 2: Practical Particle Physics 3rd November 2009

What can we measure at the LHC, and how do we interpret that in term of fundamental particles and interactions?

- Particle Properties and Quantum Numbers
- * Natural Units* Relativistic kinematics
- Decay PropertiesScattering Properties

Tools of Quantum Mechanics

from introductory Subatomic slides

- Each particle can be described as a quantum state, $|\phi\rangle$
- The electromagnetic, weak and strong forces acting on these states can be represented by (three different) quantum operators, \hat{O}
- Rates of interactions such as particle lifetimes and scattering cross sections are given by Fermi's Golden rule:
- Transition between an initial state $|\phi_i\rangle$ and a final state $|\phi_f\rangle$ are related to the matrix element $\mathcal{M} = V_{fi} = \langle \phi_f | \hat{O} | \phi_i \rangle$:

Transition probability, $T = \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho$

- *T* is related to the cross section of scattering, σ . e.g. $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \propto |\mathcal{M}(e^+e^- \rightarrow \mu^+\mu^-)|^2$.
- *T* is related to the inverse lifetime of a decay, τ . e.g. $\tau(\mu^- \rightarrow e^- v_e^- v_\mu) \propto 1/|\mathcal{M}(\mu^- \rightarrow e^- v_e^- v_\mu)|^2$.

We will see how to calculate $\mathcal M$ in future lectures

Quark and Lepton Flavour Quantum Numbers

- Lepton number, L: Total number of leptons total number of anti-leptons
 - ► Electron number, *L*_e
 - Muon number, L_{μ} $L_e = N(e^-) N(e^+) + N(\nu_e) N(\bar{\nu}_e)$
 - → Tau number, L_{τ} $L_{\mu} = N(\mu^{-}) N(\mu^{+}) + N(\nu_{\mu}) N(\bar{\nu}_{\mu})$
 - $L = L_e + L_\mu + L_\tau$ $L_\tau = N(\tau^-) N(\tau^+) + N(\nu_\tau) N(\bar{\nu}_\tau)$

• Quark Number, N_q : Total number of quarks – total number of anti-quarks

- → Up quark number, N_u : e.g. $N_u = N(u) N(\overline{u})$ → Charm quark number, N_c
- → Down quark number, *N*_d
- → Strange quark number, N_s
- $N_q = N_u + N_d + N_s + N_c + N_b + N_t$
- $N_{\rm d}$ \rightarrow Bottom quark number, $N_{\rm b}$
 - Top quark number, $N_{\rm t}$
- Lepton number, electron number, muon number and tau number (L, L_e, L_μ, L_τ) are conserved in **all** interactions: strong, electromagnetic and weak.
- Quark number (N_q) is also conserved in all interactions.
- Individual quark numbers $(N_u, N_d, N_s, N_c, N_b, N_t)$ are conserved in strong and electromagnetic interactions. They are not (necessarily) conserved in weak interactions.

Natural Units I						
SI units:	kg m s : [M] [L] [T]	Natural	C units: [Ener	GeV rgy] [ve	c elocity	ħ] [action]
 For everyday physics SI units are a natural choice: M_(SH student)~75kg. Not so good for particle physics: M_{proton}~10⁻²⁷kg 						
 PP chooses a different basis - Natural Units, based on: ★ quantum mechanics (ħ); ★ relativity (c); ★ appropriate unit of energy 1 GeV = 10⁹ eV = 1.60 × 10⁻¹⁰ J 						
	Energy	GeV	Time (($GeV/\hbar)^{-1}$	-1	
	Momentum Mass Ge	GeV/c V/c^2	Length (Area (G	GeV/ħc)	c) ⁻¹ -2	

Natural Units II				
Simplify even further by \bigstar measuring speeds relative to c \bigstar measuring action/angular momentum/spin relative to \hbar Equivalent to setting $c = \hbar = 1$! All quantities are expressed in powers of GeV				
	Energy GeV	Time GeV ⁻¹]	
	Momentum GeV	Length GeV ⁻¹		
	Mass GeV	Area GeV ⁻²		
Convert to SI units by reintroducing missing factors of \hbar and c • Example: Area = 1 GeV ⁻² $[L]^2 = [E]^{-2} [\hbar]^n [c]^m = [E]^{-2} [E]^n [T]^n [L]^m [T]^{-m}$ $n = 2, m = 2$				
Area (in SI units) = 1 GeV ⁻² × $\hbar^2 c^2$ = 3.89 × 10 ⁻³² m ² = 0.389 mb				
Other common units: • Masses and energies measured in MeV • cross section measured in barn, $\mathbf{b} \equiv 10^{-28} \text{ m}^2$ • lengths in $\mathbf{fm} = 10^{-15} \text{ m}$ • electric charge in units of e Two useful relations: $\hbar c = 197 \text{ MeV fm}$ $\hbar = 6.582 \times 10^{-22} \text{ MeV s}$				

Review: Relativistic Dynamics

- Please review JH D&R §14
- Two important quantities for Lorentz transformations:

$$\beta = v/c$$
 $\gamma(v) = 1/\sqrt{1-\beta^2}$

- Four-momentum of a particle: $\underline{p} = (E/c, p_x, p_y, p_z) = (E/c, \vec{p})$
- Energy of a particle $E^2 = \overline{\vec{p}}^2 c^2 + m^2 c^4$ $E = \gamma m c^2$
- Scalar product of 4-momentum: $(\underline{p})^2 = (E/c)^2 \vec{p}^2 = m^2 c^2$
- Particles with *m*=0 travel at the speed of light

Natural Units

Lorentz boosts: $\gamma = E/m$ $\gamma \beta = |\vec{p}|/m$ $\beta = |\vec{p}|/E$

Four momentum: $\underline{p} = (E, p_x, p_y, p_z) = (E, \vec{p})$

Invariant mass $(\underline{p})^2 = E^2 - \vec{p}^2 = m^2$

		. •
Uartic		timo

Scattering

Consider a collision between two particles: *a* and *b*.

- Elastic collision: *a* and *b* scatter off each other $a \ b \rightarrow a \ b$. *e.g.* $e^+e^- \rightarrow e^+e^-$
- Inelastic collision: new particles are created $a \ b \rightarrow c \ d \dots \ e.g. \ e^+e^- \rightarrow \mu^+\mu^-$

Two main types of particle physics experiment:

 (E, \vec{p}_a)

• Collider experiments beams of a and b are brought into collision. Often $\vec{p}_a = -\vec{p}_b$

$$(E_a, \vec{p_a}) \qquad \underbrace{b} \\ (E_b, \vec{p_b}) \qquad (E_b, \vec{p_b})$$

• Fixed Target Experiments: A beam of *a* are accelerated into a target at rest. *a* scatters off *b* in the target.

ALLEE CHS HILLE LHC LHC

p-p collider

14

Measuring Scattering

- The cross section, σ , measures the how often a scattering process occurs.
- σ is characteristic of a given process (force) from Fermi's Golden Rule $\sigma \propto |\mathcal{M}|^2$ and energy of the colliding particles.
- σ measured in units of area. Normally use barn, 1 b = 10⁻²⁸m².
- Luminosity, *L*, is characteristic of the beam. Measured in units of inverse area per unit time.
- Integrated luminosity, $\int \mathcal{L} dt$ is luminosity delivered over a given period. Measured in units of inverse area, usually b^{-1} .
- What, and how often, particles are created in the final state.

Force	Typical Cross Sections		
Strong	10 mb		
Electromag	10 ⁻² mb		
Weak	10 ⁻¹³ mb		

• Event rate: $w = \mathcal{L}\sigma$

 $N = \sigma \int \mathcal{L} dt$

Collision Examples

• The previous collider at CERN collided electrons and positrons head-on with $E(e^{-}) = E(e^{+}) = 45.1 \text{ GeV}$

$$s = \left(\frac{p(e^{+}) + p(e^{-})}{\underline{p}(e^{+}) + \underline{p}(e^{-})}\right)^{2}$$

= $2m_{e}^{2} + 2(E^{2} - |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|\cos\theta)$
 $\approx 2(E^{2} + |\vec{p}_{e^{+}}||\vec{p}_{e^{-}}|)$
 $\approx 4E^{2}$

 $E_{\rm CM} = 2E = 91.2 \, {\rm GeV}$

- $\sigma(e^+e^- \rightarrow \mu^+\mu^-)=1.9 \text{ nb at } E_{CM}=91.2 \text{ GeV}$
- Total integrated luminosity $\int \mathcal{L} dt = 400 \text{ pb}^{-1}$

•
$$N_{\text{evts}}(e^+e^- \rightarrow \mu^+\mu^-) = 400,000 \times 1.9 = 760,000$$

- To make hadrons, a 45.1 GeV electron beam was fired into a Beryllium target.
- Electrons collide with protons and neutrons in Beryllium.

$$s = \left(\underline{p}(e^{-}) + \underline{p}(p)\right)^{2}$$

$$= m_{e}^{2} + m_{p}^{2}$$

$$+ 2(E_{e}E_{p} - |\vec{p}_{e}||\vec{p}_{p}|\cos\theta)$$

$$\approx 2(E_{e}m_{p})$$

$$E_{CM} = \sqrt{2E_{e}m_{p}}$$

$$= \sqrt{2 \times 45.1 \times 1}$$

$$= 9.5 \text{ GeV}$$

• In fixed target electron energy is wasted providing momentum to the CM system rather than to make new particles.

19

Lecture 2 Summary			
Natural Units: set $\hbar = c = 1$	Particle Scattering		
 Measure energies in GeV Every quantity is measured as a power of energy 	• Cross section, σ , probability for decay to happen. Measured in b = 10^{-28} m ² .		
 Particle Decay Lifetime, τ, time taken for sample 	• Luminosity, \mathcal{L} is a property of beam (s)		
to decrease by <i>1/e</i> .	 Integrated luminosity, ∫<i>Ldt</i>. 		
• Partial width of decay mode,	• Number of events: $N = \sigma \int \mathcal{L} dt$		
• Total width is sum of all possible decay widths. $\Gamma = \hbar/\tau$	 Two types of scattering experiment: collider and fixed target. 		
Branching ratio, proportion	Relativistic Kinematics $m = (F, m, m, m) = (F, \vec{m})$		
decays to given final state, BR $(A \rightarrow x) = \Gamma(A \rightarrow x)/\Gamma$	$\stackrel{p}{=} (L, p_x, p_y, p_z) - (L, p) \\ \left(\underbrace{p}_{\Xi} \right)^2 = E^2 - \vec{p}^2 = m^2$		
Conserved quantum numbers tell us about the underlying symmetries	$s = (\underbrace{p}_{\equiv a} + \underbrace{p}_{\equiv b})^2 \qquad E_{\rm CM} = \sqrt{s}$		