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Virtual Particles

Yukawa Potential for QED
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Schrödinger and Klein Gordon

Ê = i� ∂

∂t
�̂p = −i��∇

ΨE(�r, t) = ψE(�r) exp {−iEt/�}

• However for particles near the speed of light E2=p2c2+m2c4  ⇒

• Solutions with a fixed energy, Ep=+(p2c2+m2c4)!, and three-momentum, p:

Ψ(�r, t) = N exp {i(�p · �r − Ept)/�}
• Also solutions with a negative energy, En="Ep = "(p2c2+m2c4)!, and momentum, !p:

• Negative energy solutions are a direct result of E2=p2c2+m2c4.

• We interpret these as anti-particles

• Quantum mechanics describes momentum and energy in terms of operators:

• E=p2/2m gives time-dependent Schödinger:

• The solution with a definite energy, E:

Ψ∗(�r, t) = N∗ exp {i(−�p · �r + Ept)/�}

− �2

2m
∇2Ψ(�r, t) = i� ∂

∂t
Ψ(�r, t)

−�2 ∂2

∂t2
Ψ(�r, t) = −�2c2∇2Ψ(�r, t) + m2c4Ψ(�r, t)

Klein-Gordon 
equation is non-

examinable
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Antimatter

Dirac Interpretation:

• The vacuum is composed of negative energy levels 
with E<0.  Each level is filled with two electrons of 
opposite spin: the “Dirac Sea”.

• A “hole” in the sea with charge "e and E<0,     
appears as a state with charge +e and E>0.

• This idea lead Dirac to predict the positron, 
discovered in 1931.
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Klein-Gordon equation predicts negative energy solutions.

t

x
e+ (x, t)

E>0

e" ("x,"t)
E<0

≡
Feynman-Stueckelberg Interpretation:

• negative energy particles moving backwards in 
space and time     correspond to...

• positive energy antiparticles moving forward in 
space and time

Ψe−(−r,−t) ∝ exp−i/�
�
(−E)(−t)− (−p) · (−r)

�

Ψe+(+r,+t) ∝ exp−i/�
�
(+E)(+t)− (+p) · (+r)

�
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Feynman Diagrams
• A Feynman diagram is a pictorial representation of a 

particular process (decay or scattering) at a particular 
order in perturbation theory.

• Feynman diagrams can be used to represent and 
calculate the matrix elements, M, for scattering and 
decays.

• Feynman diagrams are very useful and powerful tools. 
We will use them a lot in this course.  We use them a 
lot in our research!

Richard Feynman receiving 
the 1967 Noble prize in 

physics for his invention of 
this technique.

Conventions
• Time flows from left to right  (occasionally upwards)

• Fermions are solid lines with arrows
• Anti-fermion are solid lines with backward pointing arrows. 
• Bosons are wavy (or dashed) lines

Use Feynman Rules to calculate M at different orders in perturbation theory.
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Higher Orders

So far only considered lowest order term in the

perturbation series. Higher order terms also

contribute

Lowest Order:
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µ+
γ

Second Order:

e
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e
+

µ-

µ+

e
-

e
+

µ-

µ+

+....

Third Order:

+....

Second order suppressed by relative to first

order. Provided is small, i.e. perturbation is
small, lowest order dominates.

Dr M.A. Thomson Lent 2004

time
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Quantum Electrodynamics (QED)

Classical electromagnetism: 

• Force between charged particle arise 
from the electric field 

• act instantaneously at a distance

Quantum Picture:

• Force between charged particle 
described by exchange of photons.

• Strength of interaction is related to 
charge of particles interacting.

Nuclear and Particle Physics Franz Muheim 2
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QED is the quantum theory of electromagnetic interactions.

�E =
Q r̂

4π�0r2

e.g. electon-proton scattering ep#ep
propagated by the exchange of 

photons
charge of 
electron

charge of 
proton

photon 
propagator

M(ep→ ep) ∝ e · 1
q2 −m2

γ

· e
Feynman rules:

• Vertex term: each photon!charged particle interaction gives a factor of 
fermion charge, Q.

• Propagator term: each photon gives a factor of                                             
where     is the photon four-momentum.

• Matrix element is proportional to product of vertex and propagator terms.

q
1/(q2 −m2

γ) = 1/q2
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Basic electromagnetic process:

• Initial state charged fermion (e, µ, $ or quark + anti-particles)

• Absorption or emission of a photon

• Final state charged fermion

Examples: e"#e"%   ;   e"%#e"

Mathematically, EM interactions are described by a term for                              
the interaction vertex and a term for the photon propagator

Electromagnetic Vertex

√
α

QED Conservation Laws

• Momentum, energy and charge is 
conserved at each vertex

• Fermion flavour (e, µ, $, u, d ...) is 
conserved:      e.g. u#u% allowed, 
c#u% forbidden  

Coupling strength

• Matrix element is proportional to the 
fermion charge: 

• Alternatively use the fine structure 
constant, &

⇒ strength of the coupling at the 
vertex is

α =
e2

4π�0�c
=

e2

4π
≈ 1

137

M∝ e

∝
√

α
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The force between two charged particles is propagated by virtual photons.

• A particle is virtual when its four-momentum squared, does not equal its rest 
mass:

• Allowed due to Heisenberg Uncertainty Principle: can borrow energy to create 
particle if energy ('E=mc2) repaid within time ('t), where "E"t # (

Virtual Particles

• In QED interactions mass of photon propagator is non-zero.

• Only intermediate photons may be virtual.  Final state ones must be real!

Example: electron-positron scattering 
creating a muon pair: e+e"#µ+µ".

q

p
1

p
3

p
4

p
2
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perturbation series. Higher order terms also
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• Four momentum conservation:

• Momentum transferred by the photon is:

• Squaring, 

p
1

+ p
2

= p
3

+ p
4

q = (p
1

+ p
2
) = (p

3
+ p

4
)

q2 = (p
1
)2 + (p

2
)2 + 2p

1
· p

2

= 2m2
e + 2(E1E2 − �p1 · �p2) > 0q2 �= m2

γ

m2
X �= E2

X − �p 2
X
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• QED is formulated from time 
dependent perturbation theory.

• Perturbation series: break up the 
problem into a piece we can solve 
exactly plus a small correction.

• e.g. for e+e"#µ+µ" scattering.

• Many more diagrams have to be 
considered for a accurate 
prediction of !(e+e"#µ+µ").

• As & is small the lowest order in the 
expansion dominates, and the series 
quickly converges!

• For most of the course, we will only 
consider lowest order contributions 
to processes.

Perturbation Theory
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Lowest Order

|M|2 ∝ α2
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2nd Order

+ ...|M|2 ∝ α4
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3rd Order

+ ...

|M|2 ∝ α6
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• Any test charge will feel the e+e" pairs: true charge 
of the electron is screened.

• At higher energy (shorter distances) the test 
charge can see the “bare” charge of the electron.

QED Coupling Constant
• Strength of interaction between electron and photon 

• However, & �s not really a constant...

• An electron is never alone: 

• it emits virtual photons, these can convert to 
electron positron pairs...

24

Running of

! specifies the strength of the interaction

between an electron and photon.

! BUT isn’t a constant

Consider a free electron: Quantum fluctuations lead to a

‘cloud’ of virtual electron/positron pairs
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∝ α =
e2

4π�0
≈ 1

137
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Yukawa Potential
The quantum and classical descriptions of electromagnetism should agree.

Yukawa developed theory whereby exchange of bosons describes force / potential. 

• Klein-Gordon equation:

• Non-time dependent solutions obey:  

• Spherically symmetric solutions of this are:

• Interpret this as a potential, V, caused by a particle of mass, m.

• For electromagnetic force, m=0, g=e. 

• Potential felt by a charged particle due to the exchange of a photon.

∇2Ψ(�r) =
m2c2

�2
Ψ(�r)

V (r) = − g2

4πr
exp

�
− r

R

�
with R =

�
mc

Ψ(|�r |) = − g2

4πr
exp

�
−mc

� |�r |
�

VEM(r) = − e2

4πr

−�2 ∂2

∂t2
Ψ(�r, t) = −�2c2∇2Ψ(�r, t) + m2c4Ψ(�r, t)
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• Elastic electron-proton scattering: e"p#e"p

• Momentum transferred to photon from e":

• Rutherford scattering: e" Au#e" Au,            
can neglect recoil of the gold atoms: E=Ei=Ef

QED Scattering Examples
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ElectronElectron--Proton ScatteringProton Scattering
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q2 = (p
f
− p

i
)2 = p2

f
+ p2

i
− 2p

f
· p

i

= 2m2
e − 2(EfEi − |�pf ||�pi| cos θ)

≈ −4EfEi sin2(θ/2)

σ ∝ |M|2 ∝ e4

q4
=

16π2α2

q4

M ∝ e2

q2
=

4πα

q2

σ ∝ Z2π2α2

E4 sin4(θ/2)

• Inelastic e"e+#µ+µ"

• Momentum transferred by 
photon:

• For this situation need full 
density of states, ), (which 
we won’t do...)

σ =
16πE2

3
|M|2 =

4πα2

3s
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q2 = (p
e+

+ p
e−

)2 = s

M∝ e2

s2
=

4πα

s2
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Relativistic quantum mechanics predicts negative energy particles: 
antiparticles.  Two interpretations: 
• a negative energy particle travelling backwards in time.
• a ‘hole’ in a vacuum filled with negative energy states.

Quantum Electro Dynamics (QED) is the quantum mechanical description 
of the electromagnetic force.
Electromagnetic force propagated by virtual photons:

Feynman diagrams can be used to illustrate QED processes.  Use 
Feynman rules to calculate the matrix element, M.

All QED interactions are described by a fermion-fermion-photon vertex:
• Strength of the vertex is the charge of the fermion, Qf.

• Fermion flavour and energy-momentum are conserved at vertex.
The photon propagator ~         where    is the 4-momentum transferred 
by the photon.
M is proportional to product of vertex and propagator terms.

Summary of Lecture 3

1/q2 q

q2 �= m2
γ
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