Particle Physics: Problem Sheet 2 Quantum numbers and QED

- 1. What quantum numbers are associated with leptons? Are they conserved in strong, weak and electromagnetic interactions?
- 2. What quantum numbers are associated with quarks? Are they conserved in strong, weak and electromagnetic interactions?
- 3. What are the charge and quark flavour quantum numbers for the \bar{u} , d and \bar{s} quarks? What are the quantum numbers of the lambda anti-baryon, $\bar{\Lambda}^0$, and of the antiproton, \bar{p} ?
- 4. The simplest vertex in QED is a fermion-fermion-photon vertex. Draw an example Feynman diagram for such a vertex. Write down *all* possible electromagnetic fermion-fermion-photon vertices.
- 5. Draw the lowest order Feynman diagram for electron-proton scattering $e^-p \rightarrow e^-p$. Discuss the corresponding scattering amplitude or Matrix element, \mathcal{M} .

Show that the photon propagator is the origin of the $1/\sin^4(\frac{\theta}{2})$ dependence of the Rutherford cross section for $e^-p \to e^-p$ scattering.

6. Draw the lowest order Feynman diagrams for our favourite process: $e^+e^- \rightarrow \mu^+\mu^-$. Discuss the corresponding Matrix element, $\mathcal{M}(e^+e^- \rightarrow \mu^+\mu^-)$.

A similar process can be used to create pairs of quarks, $e^+e^- \to q\overline{q}$. Discuss the corresponding Matrix element for this process, $\mathcal{M}(e^+e^- \to q\overline{q})$.

What can you say about the ratio of the cross sections,

$$\frac{\sigma(e^+e^- \to q\overline{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}?$$

Please note: this is not the whole answer to the problem! We'll look more at this process in the coming weeks.

- 7. Draw the lowest and second order Feynman diagrams for electron-muon scattering $e^-\mu^- \rightarrow e^-\mu^-$. Discuss the corresponding matrix element, \mathcal{M} , and cross section for the lowest order. Estimate the contribution of the second order diagrams to the cross section.
- 8. Some of what we have learned about QED is applicable to the weak force. The weak force can be propagated by the W^{\pm} -boson with mass $m_W = 80 \text{ GeV}/c^2$. For example, nuclear beta decay can be described as $d \to uW^-$, followed by the decay of the W^- into $e^-\bar{\nu}_e$.

Estimate the maximum range of the weak force propagated by the W-boson.

What does the Yukawa potential look like for exchange of a W-boson? The coupling of the W-boson, is written as g_W .