

The force between two charged particles is propagated by virtual photons.

- A particle is virtual when its four-momentum squared, does not equal its rest mass: $m_X^2 \neq E_X^2 \vec{p}_X^2$
- Allowed due to **Heisenberg Uncertainty Principle**: can borrow energy to create particle if energy ($\Delta E = mc^2$) repaid within time (Δt), where $\Delta E \Delta t \approx \hbar$

- In QED interactions mass of photon propagator is non-zero.
- Only intermediate photons may be virtual. Final state ones must be real!

Perturbation Theory

- QED is formulated from time dependent **perturbation theory**.
- Perturbation series: break up the problem into a piece we can solve exactly plus a small correction.
- *e.g.* for $e^+e^- \rightarrow \mu^+\mu^-$ scattering.
 - Many more diagrams have to be considered for a accurate prediction of $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$.
- As *α* is small the lowest order in the expansion dominates, and the series quickly converges!
- For most of the course, we will only consider lowest order contributions to processes.

Yukawa Potential

The quantum and classical descriptions of electromagnetism should agree. Yukawa developed theory whereby exchange of bosons describes force / potential.

• Klein-Gordon equation:

$$-\hbar^2 \frac{\partial^2}{\partial t^2} \Psi(\vec{r},t) = -\hbar^2 c^2 \nabla^2 \Psi(\vec{r},t) + m^2 c^4 \Psi(\vec{r},t)$$

• Non-time dependent solutions obey:

$$\nabla^2 \Psi(\vec{r}) = \frac{m^2 c^2}{\hbar^2} \Psi(\vec{r})$$

• Spherically symmetric solutions of this are:

$$\Psi(|\vec{r}|) = -\frac{g^2}{4\pi r} \exp\left(-\frac{mc}{\hbar}|\vec{r}|\right)$$

• Interpret this as a potential, V, caused by a particle of mass, m.

$$V(r) = -\frac{g^2}{4\pi r} \exp\left(-\frac{r}{R}\right) \text{ with } R = \frac{\hbar}{mc}$$

• For electromagnetic force, *m*=0, *g*=*e*.

$$V_{\rm EM}(r) = -\frac{e^2}{4\pi r}$$

• Potential felt by a charged particle due to the exchange of a photon.

