Subatomic Physics: Particle Physics Handout 8

Introduction to the Weak Force

- * Weak interactions
- * Charged and neutral current
- * Feynman Rules for weak force

Introduction to the Weak Force

The weak force is responsible for some of the most important phenomena:

- Decays of the muon and tau leptons
- Neutrino interactions
- Decays of the lightest mesons and baryons
- Radioactivity, nuclear fission and fusion

Characteristics of Weak Processes:

- Long lifetimes 10⁻¹³ 10³ s
- Small cross sections 10⁻¹³ mb

Boson	₩±	Z^0
Mass GeV/c ²	80.4	91.2
charge, e	±1	0
spin	1ħ	1ħ

Weak Force is propagated by massive W^+ , W^- and Z^0 bosons

- The interactions of W[±] and Z⁰ are different (related by symmetry of the weak interaction)
 - W^{\pm} and Z^{0} can interact with each other
 - W^{\pm} and γ can interact (as W^{\pm} bosons are charged)

QED	<i>W</i> -boson	
mediated by the exchange of virtual photons	mediated by the exchange of <i>W</i> boson	
acts on all charged particles	acts on all quark and leptons	
coupling strength $\propto e \propto \sqrt{\alpha}$	coupling strength $\propto g_W \propto \sqrt{\alpha_W}$	
propagator term: $1/(q^2 - m_{\gamma}^2) = 1/q^2$	propagator term: $1/(q^2 - m_W^2)$	
For many processes:	For many processes:	
$\mathcal{M} \propto e^2/q^2$	$\mathcal{M} \propto g_W^2/(q^2-m_W^2)$	
$e^{-} \rightarrow e^{-} \frac{e^{-}}{2} \frac{e^{-}}{2}$	e ⁻ g _w V ^e	

Interactions of the W[±] boson

- Known as "charged current interactions"
- W^{\pm} boson interacts with all fermions (all quarks and leptons)
- Charged current changes the flavour of the fermion:
 - *e.g.* electron emitting an *W*-boson can't remain an electron violates conservation of charge!
 - an electron turns into a electron neutrino
 - an up quark turns into a down quark and vice versa!
- Coupling strength at every vertex $\propto g_W$
- Propagator term describing the W-boson $\propto (q^2 m_H^2)$
 - \underline{q} is the four-momentum transferred by $\overline{the} W$ -boson

3

Allowed Flavour Changes

 α_W

 $g_W V_{ud}$

d'

At a W-boson vertex:

- Lepton numbers: L_e , L_μ and L_τ , is conserved: Allowed lepton flavour changes: $e^- \leftrightarrow v_e \quad \mu^- \leftrightarrow v_\mu \quad \tau^- \leftrightarrow v_\tau$
- Total Quark Number, N_q, is conserved
- Individual quark flavour numbers: N_u, N_d, N_s, N_c, N_b, N_t are not conserved

Allowed quark flavour changes:

 $(Q=+2/3 e \text{ quark}) \leftrightarrow (Q=-1/3 e \text{ quark})$

 $(\mathbf{d} \ \mathbf{s} \ \mathbf{b}) \leftrightarrow (\mathbf{u} \ \mathbf{c} \ \mathbf{t})$

- Each of the nine possible quark flavour changes has a different coupling strength: e.g. *gwV*_{ud} for u to d quarks (*V*s are terms in CKM matrix *V*_{CKM} more next lecture)
- Main quark flavour changes are within a generation:

 $\mathbf{d} \leftrightarrow \mathbf{u} \quad \mathbf{s} \leftrightarrow \mathbf{c} \quad \mathbf{b} \leftrightarrow \mathbf{t}$

Interactions of the Z^{0} boson

- Known as "neutral current interactions"
- Acts on all fermions (all quarks and leptons)
- Neutral current conserves flavour of the fermion
- No allowed fermion flavour changes
- Propagator term $\propto \frac{1}{(\underline{q}^2 m_Z^2)}$
- Coupling strength depends on fermion flavour we won't consider this in this course

Anywhere a photon could be exchanged a \mathbb{Z}^0 boson can be exchanged. (Almost vice-versa, except \mathbb{Z}^0 boson also has neutrino interactions too!)

Electromagnetic and weak neutral current interactions are linked!

Weak Force Summary		
The weak force acts on all quarks and leptons. Two massive bosons propagate the weak interaction: W^{\pm} and Z^{0} .	 Weak interactions are characterised by: Long lifetimes 10⁻¹³ - 10³ s Small cross sections 10⁻¹³ mb 	
W^{\pm} -boson interactions changes fermion flavour $e^{-} \leftrightarrow v_{e} \mu^{-} \leftrightarrow v_{\mu} \tau^{-} \leftrightarrow v_{\tau}$ $(Q=+2/3 \ e \ quark) \leftrightarrow (Q=-1/3 \ e \ quark)$ • quark coupling at W^{\pm} vertex: $g_{W} V_{CKM}$ e lepton coupling at W^{\pm} vertex: g_{W} W^{\pm} propagator term: 1 $(\underline{q}^{2} - m_{W}^{2})$	Z^{0} -boson interactions conserve the flavour of the fermion • Z^{0} -boson propagator term: $\frac{1}{(\underline{q}^{2}-m_{Z}^{2})}$ Z^{0} -boson interactions are strongly linked to the electromagnetic interaction	