
Subatomic Physics: Particle Physics Handout 9

Physics at the LHC

- *LHC collisions
- Higgs boson
- *Supersymmetry
- *Extra dimensions
- *Force Unification

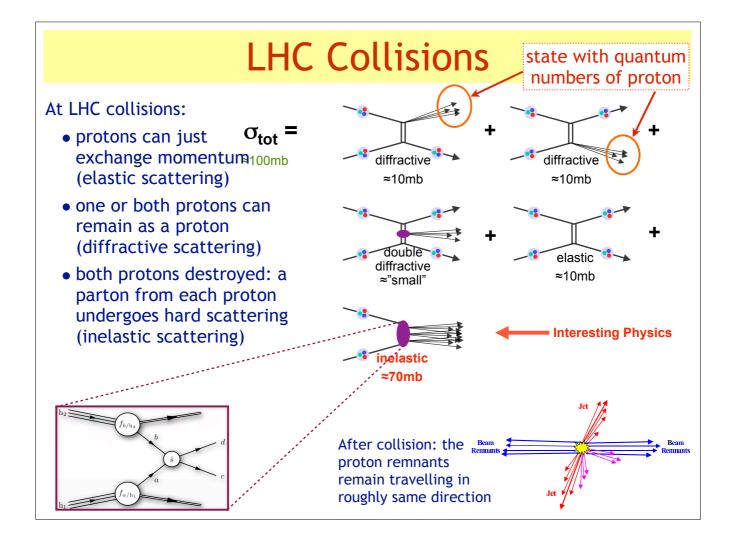
LHC Collision Energy

Proton - proton collision at centre of mass energy, $\sqrt{s}=14~{ m TeV}$

From handout 7: parton model

A high-energy proton consists of partons (quarks **and** gluons **and** anti-quarks) - interacting independently

- The interactions of two partons one from each colliding quark is called **hard scatter**
- The hard scatter can be: quark-quark, quark-antiquark, quark-gluon, gluon-gluon etc.
- Key parameter for describing partons is Feynman *x*: fraction of proton momentum carried by parton
- The effective energy of the collision is $\sqrt{\hat{s}}$, defined as: $\hat{s} = (\underline{p}_1 + \underline{p}_2)^2$


$$h_2$$
 f_{b/h_2} b d s c h_1 f_{a/h_1} f_{a/h_1} h_2 h_1 f_{a/h_1} h_2 h_3 h_4 h_4

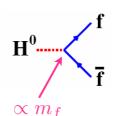
• $\underline{p}_1, \underline{p}_2$: four-momenta of the interacting partons

$$\hat{s} = (p_{\pm 1} + p_{\pm 2})^2 = ((x_1 E_p / c, 0, 0, x_1 p_p) + (x_2 E_p / c, x_2 0, 0, -x_2 p_p))^2$$

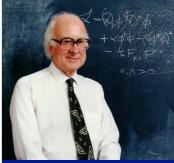
= $m_1^2 + m_2^2 + 2(x_1 x_2 E_p^2 / c^2 + x_1 x_2 p_p^2)$

$$= m_1 + m_2 + 2(x_1 x_2 E_p / c + x_1)$$

- $= 4 x_1 x_2 p_p = x_1 x_2 s$
- Effective collision energy not known on event-by event: always less proton-proton energy of $\sqrt{s}=14~{\rm TeV}$



The Higgs Boson


The Higgs boson: missing piece of the Standard Model.

- The theoretical framework for the Standard Model only works for massless bosons and massless fermions.
- \bullet Introducing Higgs field give masses to the W and Z bosons
- Two key consequences:
 - The fermions also get a mass!
 - The existence of an additional massive, neutral boson: the Higgs boson
- Mass of the Higgs is not predicted in Standard Model, we have to search for it.

Higgs interacts with W and Z bosons, and all massive fermions.

Interaction strength between Higgs and fermions \propto fermion mass, m_f

Peter Higgs emeritus professor in the School of Physics

The Higgs Mechanism

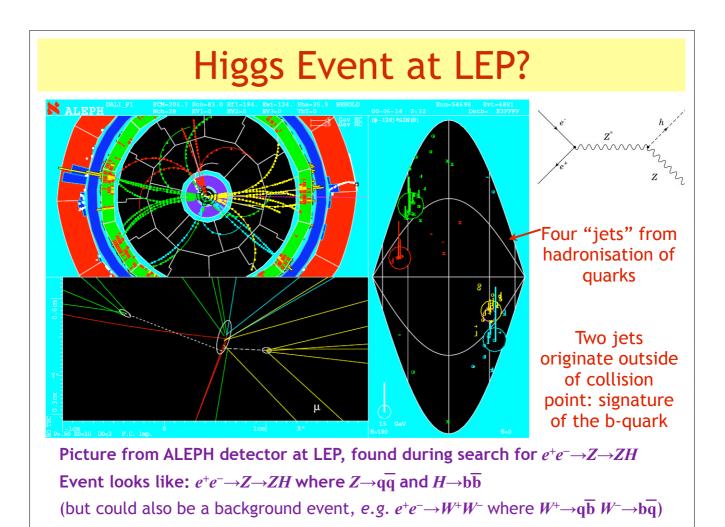
The Higgs exists at all places in space and time even in a vacuum. This is in contrast to the electromagnetic field (photons) and QCD field (gluons) which do not exist in a vacuum.

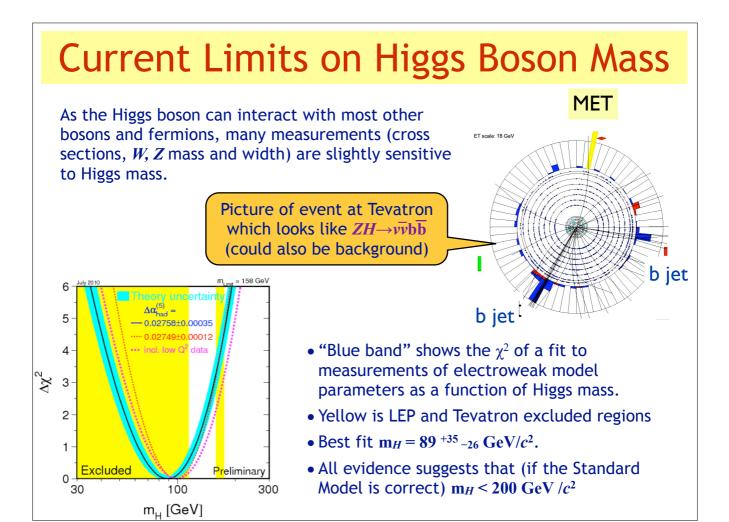
1. Physicists (representing the Higgs field evenly distributed throughout space) are at a conference reception; all free to move around the room.

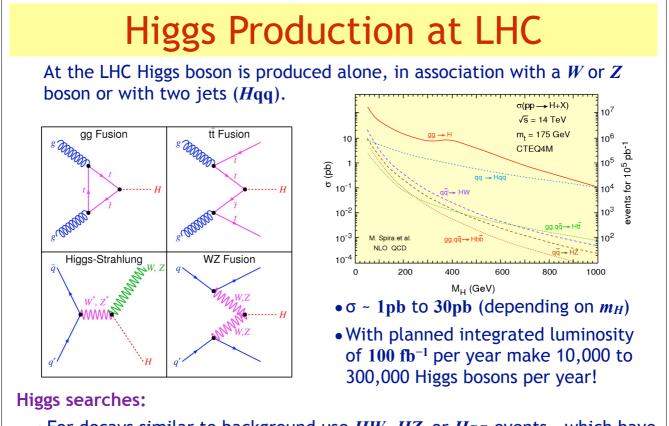
2. In comes a noble prize winner; everyone wants to speak to him. physicists crowd around him. The noble laureate is not free to move around; he has gained inertia by interacting with the crowd.

This is analogous to how the particles acquire mass: by interacting with the Higgs field. Laureates of different popularity gain different masses.

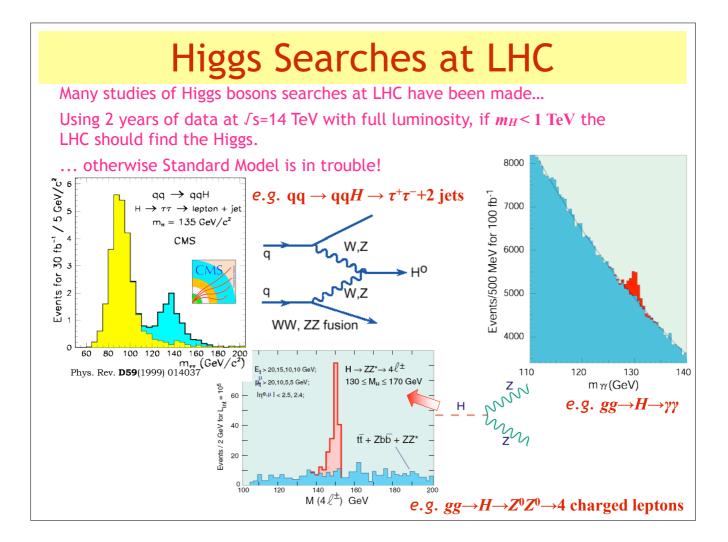
The Higgs Boson


3. The next evening; physicists enjoying another drink.


A rumour enters the room: the keynote speaker tomorrow will announce the discovery of a new particle! 4. The physicists gather together to spread the rumour. The group of physicist acquire inertia.



The clustering of the field of physicists is as if a new massive particle has formed. This is the Higgs boson.



- For decays similar to background use *HW*, *HZ*, or *Hqq* events which have smaller background.
- For higher masses use single *H* production higher cross section.

Supersymmetry (SUSY)

Adding the Higgs mass into the Standard Model has some theoretical problems.

An extra symmetry - **supersymmetry** - would solve this problem. It would also result in **new** (as yet undiscovered) **fundamental particles.**

Supersymmetry is symmetry between fermions & bosons:

• Every fundamental fermion has a boson partner. e.g.:

```
\begin{array}{ccc} u \leftrightarrow \tilde{u} & \tau \leftrightarrow \widetilde{\tau} \\ \text{up-quark} \leftrightarrow \text{up squark} & \text{tau-lepton} \leftrightarrow \text{tau-slepton} \end{array}
```

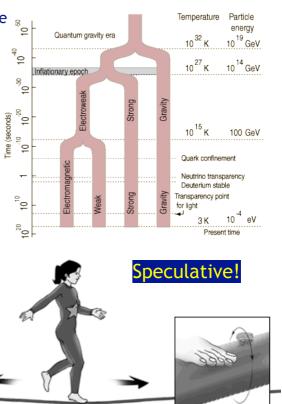
• Every boson (*W*, *Z*, γ, Higgs) has a fermion partner *e.g.*:

- Normal elementary particles
- The lightest supersymmetric particle (LSP) is probably neutral and stable. Supersymmetric particles will decay, eventually producing the LSP. It will leave the detector without interacting too much - similar to an neutrino.
- LSP is a candidate for dark matter

And what about gravity?

The ultimate unification of the forces should include gravity.

• But gravity is very much weaker than the other forces...

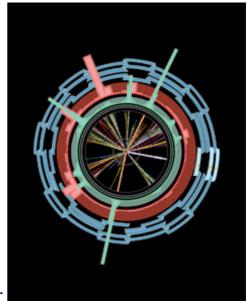

Many ideas proposed to explain this.

e.g. Extra dimensions

- Most particles (and us) can only travel in the regular 3 space + 1 time dimensions
- Gravitions the bosons which propagate gravity can travel in the extra dimensions.
- Strength of gravity is natural weaker in our dimensions $m_1 m_2$ $m_1 m_2$

$$F(r) = G \frac{m_1 m_2}{r^2} \to G_{\text{new}} \frac{m_1 m_2}{r^4}$$

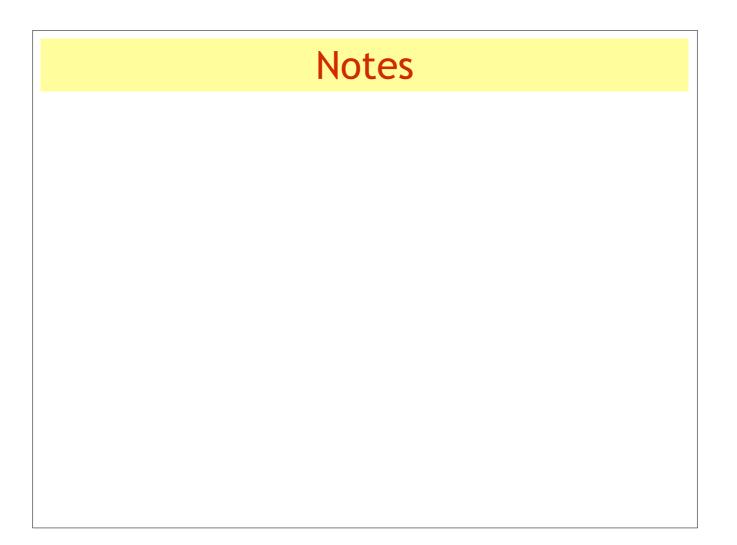
- They have to be small extra dimensions, otherwise we'd have seen them already.
- If the dimensions are big enough we might see their effects at the LHC!


Mini black holes

From: http://cerncourier.com/cws/article/cern/29199

- Mini black hole production at the LHC would be an observable consequence of extra space-time dimensions.
- Key parameter: size of extra dimension, R_H . Limit on $R_H < \sim 1$ mm.
- With a extra dimension the **real** gravitational constant, G_{new} , is larger than the effective one we see: allows us to make a small black hole.
- Schwarzschild black hole radius: $R_S = 2 G_{new} M / c^2$
- The LHC can probe distances:

$$R \approx \frac{\hbar c}{E} \sim \frac{197 \text{ MeV} \cdot \text{fm}}{2 \text{ TeV}} \sim 10^{-4} \text{ fm}$$


- Can explore any black holes with radius $R_S > 10^{-4}$ fm.
- Cross section for making black holes could be $\sigma \sim \pi R_{H^2}$: as large as 1 per minute for $R_H \sim$ mm.
- Black hole will decay very quickly $(\tau \sim 10^{-26} s)$ via Hawking radiation: particles emitted isotropically.

Simulation of a mini black hole decay in the ATLAS detector

LHC Physics Summary

The Standard Model is a beautiful theory of (almost) all the measurements we see in particle physics But it isn't the whole picture. "We can explain everything, but we understand (at a fundamental level) almost nothing!"		Interesting LHC collisions are due to the hard scattering of one parton from each proton.
Higgs boson is the missing particle in the Standard Model. The LHC has a good chance to see it.	Higgs boson couples to the fermions proportionally to fermion mass.	Effective collision energy is: $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$
Ultimately we think the electroweak, strong and gravitational forces should be described by one underlying interaction. Extra dimensions could be explain some of this may provide mini black holes at LHC		Supersymmetry is one popular theory for physics beyond the Standard Model. Supersymmetry provides a candidate particle for dark matter.

