Particle Physics: Problem Sheet 1 The Standard Model and Practical Particle Physics

- 1. List all fundamental fermions in the Standard Model.
- 2. What quantum numbers are associated with leptons? Are they conserved in strong, weak and electromagnetic interactions?
- 3. What quantum numbers are associated with quarks? Are they conserved in strong, weak and electromagnetic interactions?
- 4. What are the charge and quark flavour quantum numbers for the \bar{u} , d and \bar{s} quarks? What are the quantum numbers of the lambda anti-baryon, $\bar{\Lambda}^0$, and of the antiproton, \bar{p} ?
- 5. Use the Pauli exclusion principle to argue why in the Δ^{++} baryon (which has total spin, $S = 3/2\hbar$ and consists of three up quarks) all the quarks have a different colour charge.
- 6. Explain why the decays $\mu^- \to e^- \bar{\nu}_e \nu_\mu$ and $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ are allowed and why $\mu^+ \to e^+ \gamma$ and $\mu^+ \to e^+ e^- e^+$ are forbidden. What about $\mu^+ \to e^- \bar{\nu}_e \nu_\mu$?
- 7. What is 1 fm in inverse GeV? How many seconds is 1 inverse GeV?
- 8. Write down the typical lifetimes for particles that decay by:
 - (a) The strong force
 - (b) The electromagnetic force
 - (c) The weak force

By looking at the liftetimes on the Particle Properties sheet, which force is responsible for the decay of π^0 , B^+ , ω^0 ?

- 9. The lifetime of the η'^0 has not been measured directly. The total width of the η'^0 has been measured to be $\Gamma(\eta'^0) = 0.203 \pm 0.016$ MeV. What is the lifetime of the η'^0 ? What force is responsible for its decay?
- 10. What are the centre-of-mass energies, $E_{\rm CM}$, of the following machines:
 - LEP1: e^+e^- collider, both beams 45.6 GeV
 - LHC: pp collider, both beams 7 TeV
 - HERA: ep collider, $E_e = 30$ GeV and $E_p = 820$ GeV.

If HERA were a fixed target machine what energy would the electron require to give an equivalent CM energy?

11. The Δ^{++} baryon can be produced by aiming a pion beam onto a hydrogen target to produce the reaction $\pi^+p \to \Delta^{++} \to \pi^+p$. Calculate the energy and momentum of the pions in the Δ^{++} centre-of-mass frame.

From the measured total width $\Gamma(\Delta)=120$ MeV calculate the lifetime of the Δ^{++} .

- 12. The B_d meson has a mass of 5.28 GeV/c² and mean lifetime of 1.54 ps. At LEP B_d mesons were produced with an average energy of 32 GeV. Calculate the mean decay length of a B_d meson at LEP.
- 13. The cross section to make b-quarks at LEP with $E_{\rm CM} = 91.2 \text{ GeV}$ was $\sigma(e^+e^- \rightarrow b\bar{b}) = 4.5 \text{ nb}$. How many $e^+e^- \rightarrow b\bar{b}$ events were produced at LEP with a integrated luminosity of $\int \mathcal{L}dt = 100 \text{ pb}^{-1}$?