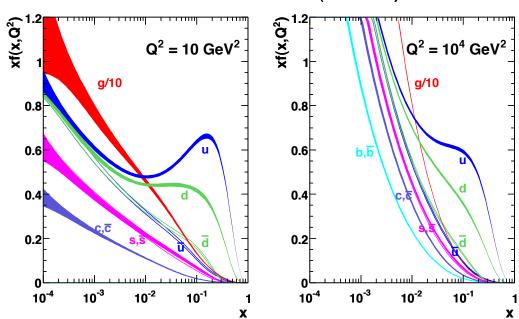
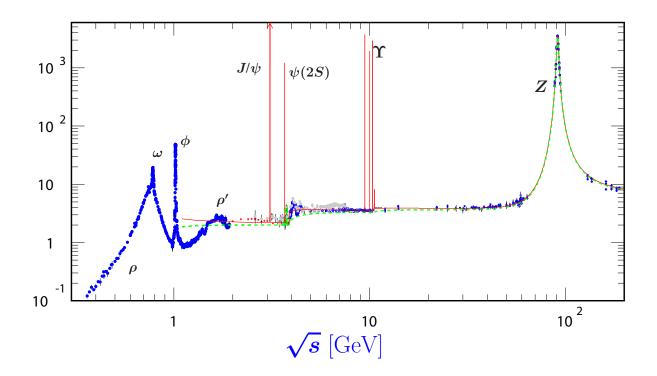
Particle Physics: Problem Sheet 4 QCD, gluons, partons

- 1. At very high beam momenta, $p \sim 100 \text{ GeV}/c$, the total cross sections for $\pi^+ p$ and pp scattering is dominated by the exchange of a gluon between quarks inside the pions and protons.
 - (a) Draw a Feynman diagram for pp and $\pi^+ p$ scattering.
 - (b) Use the number of possible diagrams to calculate the ratio of cross sections $\sigma(\pi^+ p)/\sigma(pp)$. Hint: every (different) diagram you can draw is equally likely.
- 2. Draw a Feynman diagram for the process $p\pi^+ \to \Delta^{++} \to p\pi^+$.
- 3. The ϕ meson decays via the strong force as follows:


$\phi \to K^+ K^-$	49%
$\phi \to K^0 \bar{K}^0$	34%
$\phi \to \pi^+ \pi^- \pi^0$	17%

What is the amount of kinetic energy produced in the decay, for these decays (also know as the Q-value of the decay).

Draw Feynman diagrams of the above decays and explain why the decays to kaons is favoured despite the low Q-value?


Hint: You have to consider the colour charge of the gluons.

4. What is meant by colour confinement?

MSTW 2008 NLO PDFs (68% C.L.)

- 5. The above figure on the right shows the (predicted) parton distribution function for the proton at momentum transfer (boson momentum) of $Q^2 = 10^4 \text{ GeV}^2$, which is roughly appropriate for proton-proton collisions at the LHC.
 - (a) At this value of Q^2 , what is the most commonly found parton in the proton?
 - (b) The "hard scatter" is the term used for the collision of two partons. In one particular collision event at the LHC, a gluon with x = 0.1 collides with an up quark with x = 0.2. What is the effective collision energy of this event, $\sqrt{\hat{s}}$?

6. The above plot shows the measured value of cross section ratio, R, defined as:

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \approx \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

as a function of the centre of momentum energy, \sqrt{s} . The jumps at $\sqrt{s} \sim 3$ GeV and ~ 10 GeV are due to the production of extra quarks. In the range:

- $2 < \sqrt{s}/\text{GeV} < 4$, when u, d and s quarks can be produced, $R \sim 2$.
- $4 < \sqrt{s}/\text{GeV} < 10$, u, d, s and c quarks can be produced, $R \sim 3.3$
- $10 < \sqrt{s}/\text{GeV} < 30$, u, d, s, c and b quarks can be produced, $R \sim 3.7$
- (For $\sqrt{s} > 30$ GeV weak force processes also take place, we won't therefore consider this here.)

Can you explain the observed values of R? Remember that $e^+e^- \rightarrow q\bar{q}$ should include all possible $q\bar{q}$ final states that can be produced for a given \sqrt{s} .