<section-header><section-header><section-header><text><text><text><list-item><list-item><list-item><list-item><list-item>

Notes & Queries

- Last lecture today
- Revision Tutorial: when?
- Past exam papers: 2012 is first time I've taught the course. This year we didn't cover some topics in so much detail as for past years.
 - Past exam papers still representative of the level of format and level of questions.
 - Problems sheet are fairly representative of exam questions.
 - In problems sheets sometimes you have to consult notes to look up somethings, these would be provided in exam questions.
- Problem Sheet solutions will appear.
- Notes being uploaded: I will email when they are complete.

From Friday: Higgs Summary

• An extra field, ϕ , is introduced to the Standard Model with a potential:

 $V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

- ullet This symmetry of the system is spontaneously broken by minimising V
- The breaking of the symmetry gives terms which can be used to give mass to the W and Z boson.
- The symmetry breaking also gives rise to a spin-0 particle: the Higgs boson, *H*.
- The Higgs boson couples (in order of strength to): *W*-bosons, *Z*-bosons, fermions (in order of mass).
- Indirect evidence suggests $m_H \sim O(100 \text{ GeV})$
- Direct searches have not found any conclusive evidence.
- At $m_H \sim 125$ GeV, hint of something using $H \rightarrow b\overline{b}$, $H \rightarrow W^+W^-$, $H \rightarrow \tau^+\tau^-H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$

Direct Searches for the Higgs Boson

- We haven't detected the Higgs boson, we are still searching for it.
- It is heavy $m_H \sim O(100 \text{ GeV})$, need a collider to make it.
- LEP (e^+e^- at CERN); TeVatron ($p\overline{p}$ at Fermilab); LHC(pp at CERN)

Higgs: Decay and Production at LHC

- Higgs cross section (σ) and branching ratios (BR) for the Higgs boson depend on m_H .
- Most interesting mass range is around $m_{H} \sim 120 \text{ GeV}$
- Main decays are: $H \rightarrow b\overline{b}$, $H \rightarrow W^+W^-$, $H \rightarrow \tau^+\tau^-$
- $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$ also useful
- On the following slides, a few results from the ATLAS and CMS experiments at LHC.

Therefore two jets are close together in detector.

ATLAS Limits on Higgs Boson

- Plots show results of experimental searches for Higgs boson
- Higgs boson of given mass ruled out when black line < 1
- Green and yellow band shows the predicted shape for the no Higgs boson scenario.
- No conclusive evidence for the Higgs boson observed.
- Higgs boson ruled out for many values of *m_H*: otherwise we would have seen it already!
- Hint of a Higgs signal around $m_H \sim 125 \text{ GeV}$

LHC/TeVatron Limits on Higgs Boson

- Both ATLAS and CMS experiments at the LHC and the Tevatron Collider see a disagreement with the no-Higgs scenario for $m_H \sim 125 \text{ GeV}$
- Need LHC experiments to collect and analyse more data to decide if this is just a statistical fluctuation or not...

Limitations of the Standard Model

- Neutrinos have mass; only left-handed neutrinos are observed.
- The Higgs mechanism only gives mass to particles with both left- and right-handed components: how can we describe the **mass of neutrinos**?
- Neutrinos oscillations suggest the electron, muon and tau quantum numbers are not fully conserved.
- *CP* violation exists, but very small effect in quarks only. Not large enough to explain matter anti-matter asymmetry of universe.
- **Higgs boson mass**: Renormalisation of the mass suggest that the mass should be naturally very high.

• Standard Model does not explain dark matter or include gravity. On following slides examine a few models proposed to address some of these problems

- Only 4.6% of the current universe is normal matter (baryons + electrons = atoms)
- To account for rotation curves of galaxies, gravitational lensing and large scale structure need:

23.3% "Dark Matter"

Must be weakly interactive massive particles (not yet discovered)

• To account for acceleration of expansion of the universe need:

72.1% "Dark Energy"

May be described by a cosmological constant $\boldsymbol{\Lambda}$

Could particle physics describe either dark matter or dark energy?

SUSY Searches at ATLAS

Summary of SUSY-things not found by ATLAS

	MSUGRA/CMSSM : 0-lep + j's + E _{T.miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.40 TeV q = g mass
	MSUGRA/CMSSM : 1-lep + j's + E _{T,miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 1.20 TeV $\tilde{q} = \tilde{g}$ mass
ŝ	MSUGRA/CMSSM : multijets + E _{T.miss}	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV g mass (large m ₀)
che	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.38 TeV \tilde{q} mass $(m(\tilde{g}) < 2$ TeV, light $\tilde{\chi}_{,1}^{0}$) ATLAS
sea	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 940 GeV \tilde{g} mass ($m(\tilde{q}) < 2$ TeV, light $\tilde{\chi}_1^0$) Preliminary
ive	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \overline{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$
clus	GMSB : 2-lep OS _{SF} + E _{T,miss}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (tan β < 35)
Ц	GMSB : $1-\tau + j's + E_{\tau,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV \tilde{g} mass (tan β > 20)
	GMSB : $2-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 990 GeV \tilde{g} mass (tan β > 20)
	$GGM: \gamma\gamma + E_{\tau,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116] 805 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) > 50 \text{ GeV})$
~	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \chi^{0}$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV g̃ mass (m(χ̃ ₁ ⁰) < 300 GeV)
atior	Gluino med. τ̃ (ğ→tīτ̃χ,) : 1-lep + b-j's + Ε _{τ.miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 150 \text{ GeV})$
ner	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t t \tilde{\chi}_1^0$) : 2-lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004] 650 GeV \tilde{g} mass $(m(\chi_1^{-0}) < 210 \text{ GeV})$
d ge	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_1^0$) : multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV \tilde{g} mass $(m(\chi_1^{-0}) < 200 \text{ GeV})$
Thir	Direct $\widetilde{b}\widetilde{b}$ ($\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV \tilde{b} mass ($m(\tilde{\chi}_{1}^{0}) < 60$ GeV)
	Direct $\widetilde{t}t$ (GMSB) : Z(\rightarrow II) + b-jet + $E_{T \text{ miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310 GeV \tilde{t} mass (115 < $m(\tilde{\chi}_1^0)$ < 230 GeV)
g	Direct gaugino $(\tilde{\chi}_1^* \tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,\text{miss}}$	$ \underline{L=1.0 \text{ fb}^{-1}(2011)[1110.6189]} 170 \text{ GeV} \widetilde{\chi}_{1}^{\pm} \text{ mass} ((m(\widetilde{\chi}_{1}^{0}) < 40 \text{ GeV}, \widetilde{\chi}_{1}^{0}, m(\widetilde{\chi}_{1}^{\pm}) = m(\widetilde{\chi}_{2}^{0}), m(\widetilde{l}, \widetilde{\gamma}) = \frac{1}{2}(m(\widetilde{\chi}_{1}^{0}) + m(\widetilde{\chi}_{2}^{0}))) $
<u> </u>	Direct gaugino $(\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow 3I \tilde{\chi}_{1}^{0})$: 3-lep + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV $\tilde{\chi}_1^{\pm}$ mass ($m(\tilde{\chi}_1^0) < 170$ GeV, and as above)
es	AMSB : long-lived $\widetilde{\chi}_1^{\pm}$	
irtici	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV g mass
d pa	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b̃ mass
live	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV t mass
-buc	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022] 810 GeV g mass
Ч Г.	GMSB : stable $\widetilde{\tau}$	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV T mass
	RPV : high-mass eµ	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV \tilde{v}_{τ} mass (λ'_{311} =0.10, λ_{312} =0.05)
RP\	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606] 760 GeV $\tilde{q} = \tilde{g}$ mass (C $\tau_{LSP} < 15$ mm)
	MSUGRA/CMSSM - BC1 RPV : 4-lepton + E _{T,miss}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.77 TeV $\widetilde{ m g}$ mass
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	<u>L=34 pb⁻¹ (2010) [1110.2693]</u> 185 GeV sgluon mass (excl: $m_{sg} < 100 \text{ GeV}, m_{sg} \approx 140 \pm 3 \text{ GeV}$)

- The strong $(\alpha_S = \alpha_3)$, electromagnetic $(\alpha = \alpha_1)$ and weak $(g_W/4\pi = \alpha_2)$ couplings depend on the energy scale of the interaction (Q)
- The coupling constants do not merge.
- \bullet Supersymmetric particles would modify the running at Q~1 TeV, allowing interactions to merge at Q $\sim 10^{16}~GeV$

Summary

- The Standard Model of particle physics: electroweak and QCD is highly predictive, tested and verified to a high degree of precision.
- However in a few areas it leaves open questions... new models are developed to overcome these issues.
- Searches are underway at the LHC for new phenomena associated with the new models, but as yet, none found.
- The Higgs boson is ruled out for many possible masses, "hints" of a signal around $m_H \sim 125$ GeV.
- Main decay modes are: $H \rightarrow b\overline{b}$, $H \rightarrow W^+W^-$; $H \rightarrow ZZ$ and $H \rightarrow \gamma\gamma$ also useful
- Additional neutral and charged Higgs bosons are predicted by extensions to the Standard Model.
- Supersymmetry predicts a doubling of particles.
- Grand Unified theories predict all there forces merge at very high energies.
- Extra dimensions could incorporate gravity into particle physics.