

D.Griffiths - Introduction to Elementary Particles (Wiley 2008) B.R.Martin & G.Shaw - Particle Physics (Wiley 1997) D.H.Perkins - Introduction to High Energy Physics (CUP 2000) More advanced textbooks F.Halzen & A.D.Martin - Quarks & Leptons (Wiley 1984) A.Seiden - Particle Physics: A Comprehensive Introduction (Addison-Wesley 2005) I.J.R.Aitchison & A.J.G.Hey - Gauge Theories in Particle Physics (Hilger 1989) Seful websites CERN/LHC http://public.web.cern.ch/public Particle Data Group (PDG) http://pdg.lbl.gov

Current Topics in Particle Physics

Content to be finalised, but probably including...

- 10. Hadron production at Colliders, Fragmentation and jets.
- 11. Weak decays of hadrons. CKM matrix.
- 12. Symmetries. Parity. Charge conjugation. Time reversal. CP and CPT.
- 13. Mixing and CP violation in K and B decays.
- 14. Neutrino oscillations. MNS matrix. Neutrino masses.
- 15. Electroweak Theory. W and Z masses. Precision tests at LEP.
- 16. Spontaneous symmetry breaking. The Higgs boson.
- 17. Beyond the Standard Model. Supersymmetry. Grand unification.
- 18. Recent physics results at the LHC.

Review: Spin

- Spin is the intrinsic angular momentum of a quantum state.
- Two quantum numbers describe the spin
 - → total spin: \hat{S}^2 Eigenvalues: $s(s+1)\hbar, s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, ...$
 - → third component: \hat{S}_Z Eigenvalues: $m_s\hbar$, $m_s = -s, -s+1, ..., s-1, s$
- Particles with an integer value of s are **bosons**
- Particles with a half-integer values of \boldsymbol{s} are fermions

• Two examples:

Photon, γ

- A boson with spin, *s*=1
- Three possible polarisation states: $\lambda = m_s = -1, 0, 1$

Electron, *e*⁻

- A fermion with spin, $s=\frac{1}{2}$
- Two possible spin orientations $m_s = +\frac{1}{2}, -\frac{1}{2}$
- "Spin-up" or "Spin-down"

5

Standard Model Matter Particles

- Matter particles are observed to be $s=\frac{1}{2}$ fermions.
- Two distinct types: quarks and leptons.
- Grouped into three, successively heavier, generations.
- Four key quantum numbers: charge (Q), isospin (I_Z) , baryon number (B), lepton number (L)

Mysteries of the Fermions

- Are the fermions really point-like objects $(r_e < 10^{-20} \text{m})$?
- Why are there exactly twelve (or 24) elementary fermions?
- Why are there three "generations" with different "flavours"?
- Why do quarks have strong interactions with three "colour charges"?
- Why do weak interactions change quark flavour, but not lepton flavour?
- Why do neutrinos have flavour oscillations?
- Why more matter than anti-matter (baryon asymmetry)?

Standard Model Forces

- Four interactions observed in nature: electromagnetic, strong, weak and gravity.
- The Standard Model describes interactions due to electromagnetic, strong, weak.
- Interactions between the fermions are transmitted by "force carrying" gauge bosons with *S*=1.
- Each force couples to a property of the fermions.
- The properties of each force are described mathematically by a symmetry group

Interaction	Coupling	Couples	Symmetry	Gauge	Charge	Mass
	Strength	То	Group	Bosons	e	${\rm GeV}$
Strong	$\alpha_s\approx 1$	colour charge	SU(3)	Gluons (g)	0	0
Electromagnetic	$\alpha = 1/137$	electric charge	U(1)	Photon (γ)	0	0
Weak	$G_F = 1 \times 10^{-5}$	weak hyercharge	${ m SU}(2)_{ m L}$	$ \begin{cases} W^{\pm} \\ Z^{0} \end{cases} $	$\begin{array}{c} \pm 1 \\ 0 \end{array}$	$80.4 \\ 91.2$
Gravity	0.53×10^{-38}	mass	?	Graviton?	0	0
	1	I	1		I	

13

Symmetries (& Mysteries)

- Symmetries are key to understanding particle physics
- Noether's Theorem: Every symmetry of nature has a conservation law associated with it, and vice-versa.
- Energy, Momentum and Angular Momentum
 - Conserved in all interactions
 - Symmetry: translations in time and space; rotations in space
- Charge conservation e.g. electric charge Q, colour charge
 - Conserved in all interactions
 - Symmetry: gauge transformation underlying U(1) and SU(3) symmetries in QM description of electromagnetism / strong force
- Lepton Flavour L_e , L_μ , L_τ and baryon number **B**
 - Conserved in all interactions
 - Symmetry: mystery!
- Quark Flavour *S*, *C*, *T*, *B*, Parity P, Charge Conjugation C, and Time Reversal T
 - Conserved in strong and electromagnetic interactions
 - Violated in weak interactions
 - Symmetry: unknown!

Beyond the Standard Model
Many models proposed to explain some mysteries in the Standard Model, e.g.
 ★ Supersymmetry (SUSY): every SM particle has a supersymmetry partner: → S=0 squarks and sleptons → S=½ neutralinos, charginos, higgsinos → automatically introduces extra Higgs bosons We are searching for these new particles directly at the LHC. Neutralinos may be candidates for dark matter.
 ★ Grand unified theories merge strong & electroweak interaction at 10¹¹ to 10¹⁶ GeV ➡ Proton decay? Lifetime >10²⁹ to 10³³ years (depending on model) Search for evidence of proton decay
★ Additional Heavy neutrino(s) at GUT scale can explain neutrino oscillations and light neutrino masses.
 ★ Extra dimension where only gravity interacts ➡ Mini black holes, new resonances Searches at the LHC.

17

Particle Physics in 2011

My personal four favourite results:

 \star Discovery of the $\chi_b(3p)$ meson

 \star Hunting down the Higgs boson

 \star Observation of Charge-Parity (CP) violation in charm mesons

★Superluminal Neutrinos

Summary & Reading List • Summary: the Standard Model is our current model for particle physics. But it doesn't explain all observations. Three Generations • Experiments are underway to try to of Matter (Fermions) make precise measurements and П ш T 1.27 GeV mass→ 2.4 MeV 171.2 GeV search for new phenomena. charge→ 2/3 ⅔ ⅔ C 1⁄2 1/2 spin→ 1/2 • Key point from today: learn the charm top nameup photon Standard Model particles and 4.8 MeV 104 MeV 4.2 GeV -^{1/3} C ^{-1/3} S -1⁄3 b forces. Ouarks 1⁄2 1/2 down strange bottom aluon 91.2 GeV 0 <2.2 eV <0.17 MeV <15.5 MeV u_{μ} V_e V_{τ} 1 1/2 1⁄2 Highly suggested reading: electron muon neutrino tau neutrino weak Bosons (Forces) • Today's lecture: Griffiths 1.1 -1.5 0.511 Me 105.7 1.777 GeV -1 е • Friday's Lecture: Griffiths chapter 2 τ $_{1/2}\mu$ ceptons 1/2 1⁄2 electror muon tau wea