

From Tuesday: Summary

- In QCD, the coupling strength a_s decreases at high momentum transfer (q^2) increases at low momentum transfer.
- Perturbation theory is only useful at high momentum transferge.
- Non-perturbative techniques required at low momentum transfer.

• Fragmentation (hadronisation) describes how partons produced in hard scatter become final state hadrons. Need non-perturbative techniques.

0.1

10 μ GeV

- Final state hadrons observed in experiments as jets. Measure jet p_T , η , ϕ
- Key measurement at lepton collider, evidence for $N_C=3$ colours of quarks.

$$\mathbf{R} = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = N_c \frac{e_q^2}{e^2}$$

• Next lecture: mesons and baryons! Griffiths chapter 5.

- Every object is colour charged: all object can interact with each other.
- QCD is very strong
- Not able to use perturbation theory to describe the interactions with low four momentum transfer q.

Hadron Collider Dictionary

- The hard scatter is an initial scattering at high q^2 between partons (gluons, quarks, antiquarks).
- The **underlying event** is the interactions of what is left of the protons after parton scattering.
- Initial and final state radiation (ISR and FSR) are high energy gluon emissions from the scattering partons.
- Fragmentation is the process of producing final state particles from the parton produced in the hard scatter.
- A hadronic **jet** is a collimated cone of particles associated with a final state parton, produced through fragmentation.
- Transverse quantities are measured transverse to the beam direction.
- An event with high transverse momentum (p_T) jets or isolated leptons, is a signature for the production of high mass particles (W,Z,H,t).
- An event with **missing transverse energy** (E_T) is a signature for neutrinos, or other missing neutral particles.
- A minimum bias event has no missing energy, and no high mass final states particles (*W*,*Z*,*H*,**b**,**t**). At the LHC these are treated as background.

Measuring Jets
• A jet has a four-momentum
$$E = \sum_{i} E_{i}$$
 $\vec{p} = \sum_{i} \vec{p}_{i}$
• Where the constituents (*i*) are hadrons detected as charged tracks and neutral energy deposits.
• Transverse momentum of jet:
 $p_{T}^{\text{JET}} = \sqrt{p_{x}^{2} + p_{y}^{2}}$
• Position in the detector in two coordinates:
• *Pseudorapidity* of jet (η) $\eta^{\text{JET}} = -\ln(\tan\frac{\theta}{2})$
with polar angle, $\theta \cos \theta = \frac{\sqrt{p_{x}^{2} + p_{y}^{2}}}{p_{z}}$
• Azimuthal angle of jet (ϕ) $\phi^{\text{JET}} = \tan^{-1}(\frac{p_{y}}{p_{x}})$
• To assign individual constituents to the jet, simplest algorithm is to define a cone around a central value: η^{JET} , ϕ^{JET} .
 $R^{2} = (\eta_{i} - \eta^{\text{JET}})^{2} + (\phi_{i} - \phi^{\text{JET}})^{2}$
• All objects with *R* less than a given value (typically 0.4 or 0.7) are assigned to the jet
Many sophisticated jet clustering algorithms exist which take into account QCD

effects.

6

• Mesons are quark-antiquark bound states with symmetric colour wavefunction which is colour neutral: $\chi_c = \frac{1}{\sqrt{3}} \left[\mathbf{r} \mathbf{\bar{r}} + \mathbf{b} \mathbf{\bar{b}} + \mathbf{g} \mathbf{\bar{g}} \right]$ • As hadrons are colour neutral, they do not interact with each other by single gluon exchange. • Instead they couple to each other by hadron exchange, typically through the lightest $\mathbf{q} \mathbf{\bar{q}}$ meson, pion (π^+, π^0, π^-) • Yukawa (1935) - the finite range of strong interactions between hadrons is due to the pion mass of ~140 MeV

Flavour Symmetries: Isospin

- Flavour symmetries are symmetries between interchange of quark flavour.
- Flavour symmetries were proposed before quarks were hypothesised to explain observed phenomena.
- Strong interactions are (approximately) invariant under flavour symmetry rotations.
- Assign quantum numbers to characterise these symmetries.
 - ➡ lsospin (I, I_3) ;
 - ➡ Strangeness (S);
 - ➡ hypercharge (Y)
- Isospin symmetry between u and d quarks
- Strong interactions are invariant under isospin rotation $\mathbf{u} \leftrightarrow \mathbf{d}$, or equivalently, $p \leftrightarrow n$
- \bullet Observed as u and d have same strong interactions and similar mass
- The u and d quarks form an *isospin doublet*:
 - Use quantum number total isospin (I) and third-component of isospin (I_3)

I = 1/2 with $I_3(u) = +1/2$ and $I_3(u) = -1/2$

(by analogy to S=1/2 with spin states \uparrow and \downarrow)

Δ^{++} and Baryon Wavefunctions							
 The overall wavefunction of a system of identical fermions must be antisymmetric under exchange of any two fermions ψ (Δ⁺⁺) = u_↑u_↑u_↑ = χ_c χ_f χ_s χ_L 							
 The Δ⁺⁺ wavefunction is symmetric in flavour χ_f and spin χ_S (J=3/2) There is no orbital angular momentum L=0 (spatially symmetric χ_L) Hence it must have an antisymmetric colour wavefunction χ_c Further evidence for quark colour Why are there no J=1/2 uuu. ddd. sss baryons? 							
	Baryon	Colour	Flavour	Spin	Spatial	Total	
	Δ^{++}	А	S	S	S	А	
	р	А	A or S	A or S	S	А	
• Full proton wave function is: $\psi(p) = \frac{1}{\sqrt{18}} [u_{\downarrow}u_{\uparrow}d_{\uparrow} + u_{\uparrow}u_{\downarrow}d_{\uparrow} - 2 u_{\uparrow}u_{\uparrow}d_{\downarrow} + u_{\downarrow}d_{\uparrow}u_{\uparrow} + u_{\uparrow}d_{\downarrow}u_{\uparrow} - 2 u_{\uparrow}d_{\uparrow}u_{\downarrow} + d_{\downarrow}u_{\uparrow}u_{\uparrow} + d_{\uparrow}u_{\downarrow}u_{\uparrow} - 2 d_{\uparrow}u_{\uparrow}u_{\downarrow}]$							

Summary

- Quarks are confined to colourless bound states, collectively known as hadrons:
 - mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction.
 - **baryons:** three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction.
 - anti-baryons: three anti-quarks.
- Lightest mesons & baryons described by isospin (I, I_3) , strangeness (S) and hypercharge Y
 - isospin $I=\frac{1}{2}$ for **u** and **d** quarks; (isospin combined as for spin)
 - $I_3 = \frac{1}{2}$ (isospin up) for up quarks; $I_3 = -\frac{1}{2}$ (isospin down) for down quarks
 - → S=+1 for strange quarks (additive quantum number)
 - \rightarrow hypercharge Y = S + B
- Hadrons display SU(3) flavour symmetry between $\mathbf{u} d$ and \mathbf{s} quarks. Used to predict the allowed meson and baryon states.
- As baryons are fermions, the overall wavefunction must be **anti-symmetric**. The wavefunction is product of colour, flavour, spin and spatial parts: $\psi = \chi_c \chi_f \chi_s \chi_L$ an odd number of these must be anti-symmetric.
 - consequences: no uuu, ddd or sss baryons with total spin $J=\frac{1}{2}$ ($S=\frac{1}{2}$, L=0)
- Residual strong force interactions between colourless hadrons propagated by mesons.