Particle Physics

Dr Victoria Martin, Spring Semester 2012 Lecture 13: Symmetries

*Symmetries of QED and QCD

- ★Parity, Charge Conjugation and Time Reversal
- ★Parity Violation in Weak Decay★CP and CPT

From Last Tuesday: Decays of Hadrons

- Hadron decays give us insight into forces in particle physics.
- Strong decays are characterised by very short lifetimes, $\tau \sim 10^{-20}$ 10^{-23} s appearing as resonances with a large width $\Gamma \sim MeV$.
 - ➡ Final states are all hadronic. All quantum numbers are conserved.
- Electromagnetic decays are characterised by $\tau \sim 10^{-20}$ 10^{-16} s.
 - → Decays containing photons are electromagnetic.
 - All quantum numbers conserved except total isospin, I.
- Weak decays characterised by long lifetimes, $\tau \sim 10^{-13}$ 10^3 s.
 - Responsible for decay of lightest baryons with a strange, charm or bottom quark.
 - → Particles can live long enough to reach the detector.
 - Final states may be leptonic, semi-leptonic or hadronic.
 - Allows access to the elements of the CKM matrix.
 - \rightarrow Isospin, *I*, *I*₃, Parity, *P*, Flavour quantum numbers not conserved.
- CKM matrix relates the mass eigenstates to the weak eigenstates. Contains a complex phase.

Introduction: Symmetries in Particle Physics

- We've already seen that symmetries play a central role in particle physics.
- Symmetries describe operations which leave a physical system unchanged.
- Why bother studying symmetries?
 - Noether's theorem: every symmetry corresponds to a conservation law.
 - Conservation laws can be experimentally verified
 - Symmetries can be used to unify the description of particle physics
- Some symmetries are observed to only hold under certain conditions, e.g. conservation of quark flavour for strong and electromagnetic interactions
- Breaking of symmetries can be either "dynamical" or "spontaneous" (e.g. Higgs mechanism).

Types of Symmetries

- Continuous symmetries:
 - Translation (conservation of momentum)
 - Time (conservation of energy)
 - → Rotation (angular momentum, spin)
- Gauge transformations:
 - Electromagnetic field (conservation of charge)
 - → SU(3) colour
 - Electroweak symmetry
- Flavour symmetries:
 - Lepton and baryon number
 - ➡ Isospin, SU(3) flavour
- Discrete symmetries:
 - ➡ Parity (P)
 - → Charge Conjugation (C)
 - → Time Reversal (T)

5

Parity (P)

- Parity, P, is a spatial inversion through the origin: $P\psi(\vec{r}) = \psi(-\vec{r})$ (not a mirror reflection in a plane!)
- If you act *P* twice on a state you get the original state back $\Rightarrow P^2 = 1$.
 - Eigenvalues of P are either +1 (even) or -1 (odd)
 - e.g. $\psi(x) = \sin kx$ is odd $\psi(x) = \cos kx$ is even
 - e.g. Hydrogen atom states described by Legendre polynomials: $Y_L^m = P_L^m(\cos \theta) e^{im\phi}$
 - Parity of state described by Y_L^m is $(-1)^L$ (depends on orbital angular momentum L)

• S (L=0) and D (L=2) states are even, P (L=1) states are odd

Charge Conjugation (C)

- A change from particle to antiparticle: $C\bar{f} = f$; $Cf = \bar{f}$
- $C^2 = 1 \Rightarrow$ eigenvalues of C are either +1 (even) or -1 (odd)
 - (*C* can be represented by $i\gamma^2$)
- Fermions and antifermions are not eigenstates of C !
- Photons have C = -1. C changes sign of the electric charges, and therefore of the electromagnetic field. Similarly gluons have C = -1.

positive charge

- C and P observed to be conserved in electromagnetic and strong interactions.
- Mesons $(q\overline{q})$ have $C = (-1)^{L+S}$ and $P = (-1)^{L+I}$
- Lightest mesons pseudoscalars ($\uparrow\downarrow$) with $J^{PC} = 0^{-+}$ Second-lightest states are vectors ($\uparrow\uparrow$ or $\downarrow\downarrow$) with $J^{PC}=1^{--}$

• e.g. J/ψ (cc) meson has $J^{PC}=1^{--}$. EM and strong decays via odd number of photons or gluons to conserve C and P

Discrete Symmetries of Physical Quantities

Quantity	Notation	P	C	T
Position	\vec{r}	-1	+1	+1
Momentum (Vector)	$ec{p}$	-1	+1	-1
Spin (Axial Vector)	$\vec{\sigma} = \vec{r} \times \vec{p}$	+1	+1	-1
Helicity	$ec{\sigma}\cdotec{p}$	-1	+1	+1
Electric Field	$ec{E}$	-1	-1	+1
Magnetic Field	\vec{B}	+1	-1	-1
Magnetic Dipole Moment	$\vec{\sigma}\cdot \vec{B}$	+1	-1	+1
Electric Dipole Moment	$ec{\sigma}\cdotec{E}$	-1	-1	-1
Transverse Polarization	$\vec{\sigma} \cdot (\vec{p_1} \times \vec{p_2})$	+1	+1	-1

Summary

- Symmetries play a key role in describing interactions in particle physics.
- QED and QCD obey Gauge symmetries in the Lagrangian corresponding to symmetry groups. These lead to conservation of electric and colour charge.
- Three important discreet symmetries: Charge Conjugation (C), Parity (P) and Time reversal (T).
 - C: changes the sign of the charge
 - *P*: spatial inversion, reserves helicity. Fermions have P=+1, antifermions P=-1
 - T: changes the initial and final states
 - Gluons and photons have C = -1, P = -1
- C and P are conserved in QED and QCD, maximally violated in weak
- Only LH neutrinos and RH anti-neutrinos are found in nature.
- CPT is thought to be absolutely conserved (otherwise RQFT doesn't work!)