

Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 17: Electroweak Theory *Weak Isospin and Hypercharge *SU(2) and U(1) symmetries *Weak Isospin and Hypercharge currents

- $\star W$ and Z bosons
- $\star Z$ boson decays
- ★ Precision measurements of Electroweak Physics

From Friday: Neutrino Summary

- Three neutrinos in the Standard Model: v_e , v_μ , v_τ
- Only left-handed neutrinos and right-handed antineutrinos are observed.
- Mass eigenstates propagate through matter or a vacuum v_1 , v_2 , v_3
- Masses are very small, < 1 eV absolute masses unknown.
- Large mixing is observed between the flavour eigenstates
- Many experiments and observations of neutrinos used to measure Δm^2 and mixing angle between the mass eigenstates.
- CP violation may be present in neutrinos, unobserved as yet!

Review from Lecture 7,8: Charged & Neutral Weak Current

• Neutral Current is the exchange of massive Z-bosons.

→Couples to all quarks and all leptons (including neutrinos)

➡No allowed flavour changes!

→Neutral weak current for fermion, *f*:

 $\frac{g_Z}{2}\bar{u}(f)\gamma^{\mu}(c_V^f - c_A^f\gamma^5)u(f)$

Lepton	c^{f}_{V}	c ^f _A	Quark	c^{f}_{V}	c^{f}_{A}
<i>ν</i> _e , <i>ν</i> _μ , <i>ν</i> _τ	1⁄2	1/2	u, c, t	0.19	1/2
<i>e</i> , μ, τ	-0.03	-1/2	d, s, b	-0.34	-1/2

• Charged Current is the exchange of massive *W*-bosons.

➡Couples to all quarks and leptons and changes fermion flavour:

Allowed flavour changes are: $e \leftrightarrow v_e$, $\mu \leftrightarrow v_\mu$, $\tau \leftrightarrow v_\tau$, $\mathbf{d}' \leftrightarrow \mathbf{u}$, $\mathbf{s}' \leftrightarrow \mathbf{c}$, $\mathbf{b}' \leftrightarrow \mathbf{t}$

➡Acts only on the left-handed components of the fermions: V-A structure.

 $g_W \frac{1}{2\sqrt{2}} \bar{u}(\nu_e) \gamma^\mu (1-\gamma^5) u(e^-)$

Weak Isospin and Hypercharge

- QED couples to electric charge; QCD couples to colour charge...
- Electroweak force couples to two "charges".
 - Weak Isospin: total and third component T, T₃. Depends on handedness
 - Hypercharge, Y In terms of electric charge $Q: Y = 2(Q T_3)$
 - All right-handed fermions have T=0, $T_3=0$
 - All left-handed fermions have $T=\frac{1}{2}$, $T_3=\pm\frac{1}{2}$
 - All left-handed antifermions have T=0, $T_3=0$
 - All right-handed antifermions have $T=\frac{1}{2}$, $T_3(\overline{f})=-T_3(f)$

Lepton	T	T 3	Y Quark		T	T 3	Y
<i>νe</i> L, <i>νμ</i> L, <i>ν</i> _τ L	1⁄2	+1/2	-1	ul, cl, tl	1/2	+1/2	1/3
$e_{\mathrm{L}}, \mu_{\mathrm{L}}, \tau_{\mathrm{L}}$	1⁄2	-1/2	-1	dl, sl, bl	1/2	- 1/2	1/3
$v_{ m R}$	0	0	0	ur, cr, tr	0	0	4/3
$e_{\rm R}, \mu_{\rm R}, \tau_{\rm R}$	0	0	-2	dr, sr, br	0	0	-2/3

Weak Isospin E	Doublets
----------------	----------

Lepton	T	T 3	Y Quark		Τ	T 3	Y
VeL, VµL, VτL	1/2	+1/2	-1	ul, cl, tl	1/2	+1/2	1/3
$e_{\mathrm{L}}, \mu_{\mathrm{L}}, \tau_{\mathrm{L}}$	1/2	-1/2	-1	dl, sl, bl	1/2	- 1/2	1/3
$\nu_{ m R}$	0	0	0	u _R , c _R , t _R	0	0	4/3
$e_{\rm R}, \mu_{\rm R}, \tau_{\rm R}$	0	0	-2	d _R , s _R , b _R	0	0	-2/3

Neutrinos and left-handed charged leptons from a "weak isospin doublet":

 $\chi_{
m L}$

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_{\mathrm{L}} \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_{\mathrm{L}} \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_{\mathrm{L}} \quad T = 1/2; \quad T_3 = +1/2; \quad T_3 = -1/2; \quad T_3$$

• Doublet consists of "charged current flavour change pair".

 \mathbf{x}

They share a quantum number, total weak isospin $T=\frac{1}{2}$.

- They differ by the third component of weak isospin $T_3=\pm\frac{1}{2}$.
- Left-handed up-type guarks and left-handed down-type guarks also form isospin doublet

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L} T = 1/2; \quad T_{3} = +1/2 \\ T_{3} = -1/2$$

6

5

Weak Isospin and Hypercharge Currents

- Weak Isospin and Hypercharge couple to a different set of bosons.
- Weak isospin doublets χ_L couple to a set of three *W*-bosons: W^1 , W^2 , W^3 , with SU(2) symmetry described by the 3 Pauli matrices:

$$j_{\mu}^{W1} = (g_W|T_3|)\overline{\chi_L}\gamma^{\mu} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \chi_L$$
$$j_{\mu}^{W2} = (g_W|T_3|)\overline{\chi_L}\gamma^{\mu} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \chi_L$$
$$j_{\mu}^{W3} = (g_W|T_3|)\overline{\chi_L}\gamma^{\mu} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \chi_L$$

• Strength of the fermion interaction with bosons is: $g_W|T_3|$

• Particles with hypercharge couple to one B-boson: B^0 with U(1) symmetry. Use electron as an example:

$$j^{Y}_{\mu} = \left(\frac{1}{2}g'_{W}Y_{e}\right)\overline{e}\gamma^{\mu}e = \frac{1}{2}g'_{W}\left(Y_{e\mathrm{L}}\bar{e_{\mathrm{L}}}\gamma^{\mu}e_{\mathrm{L}} + Y_{e\mathrm{R}}\bar{e_{\mathrm{R}}}\gamma^{\mu}e_{\mathrm{R}}\right)$$

• Strength of the fermion interaction with bosons is: $g'_W Y/2$

Physical Bosons

• The physical W^+ , W^- , Z^0 , γ bosons are linear superpositions of the W^1 , W^2 , W^3 and B^0 bosons.

$$W^{+} = \frac{1}{\sqrt{2}}(W^{1} - iW^{2}) \qquad W^{-} = \frac{1}{\sqrt{2}}(W^{1} + iW^{2})$$
$$Z^{0} = W^{3}\cos\theta_{W} - B^{0}\sin\theta_{W} \qquad \gamma = W^{3}\sin\theta_{W} + B^{0}\cos\theta_{W}$$

• The coupling of the W^+ , W^- bosons are

$$\frac{1}{\sqrt{2}}(g_W|T_3|) = \frac{1}{2\sqrt{2}}g_W$$

• The (1- $\gamma^5)$ term is integrated into the definition of the χ_L doublet.

• The electron current associated with the
$$\gamma$$
 is:
 $j^{W^3}_{\mu} \sin \theta_W + j^Y_{\mu} \cos \theta_W$
 $= (g_W | T_3 | \sin \theta_W) \overline{\chi_L} \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \chi_L + (\frac{1}{2} g'_W Y_e \cos \theta_W) \overline{e} \gamma^{\mu} e$
 $= -(\frac{1}{2} g_W \sin \theta_W) \overline{e_L} \gamma^{\mu} e_L + (\frac{1}{2} g'_W \cos \theta_W) (-\overline{e_L} \gamma^{\mu} e_L - 2\overline{e_R} \gamma^{\mu} e_R)$
• Consistent with the photon coupling if $e = g'_W \cos \theta_W = g_W \sin \theta_W$

8

7

sin²
$$\theta_W$$
 and Z-boson couplings
• The mixing angle between g_W and g'_W is not a prediction of the model, it
must be measured experimentally.
 $\sin^2 \theta_W = \frac{g'_W}{g_W^2 + g'_W} \approx 0.23$
• The Z-boson the orthogonal mixture to the γ :
 $Z^0 = W^3 \cos \theta_W - B^0 \sin \theta_W$
• predicts the couplings of the Z⁰ boson in terms of T_3 and $Y = 2(Q - T_3)$
• e.g. for electron:
 $j_{\mu}^z = \frac{g_W}{\cos \theta_W} \left[(T_3 - Q \sin^2 \theta_W) (\overline{e_L} \gamma^{\mu} e_L) - (Q \sin^2 \theta_W) (\overline{e_R} \gamma^{\mu} e_R) \right]$
 $= \frac{g_Z}{2} \overline{e} \gamma^{\mu} (c_V^e - c_A^e \gamma^5) e$
• with:
 $g_Z = \frac{g_W}{\cos \theta_W} \quad c_V = T_3 - 2Q \sin^2 \theta_W \quad c_A = T_3$

Summary of Electroweak Unification

- We have recovered the behaviour of the W^{\pm} , Z and γ
 - We introduced an SU(2) symmetry (3 bosons) coupling to weak isospin with a coupling constant g_W
 - We introduced a U(1) symmetry (1 boson) coupling to weak hypercharge with a coupling constant g'_W
 - Together predicts four bosons we identify with W^+ , W^- , Z and γ
 - \Rightarrow Electroweak Theory is often called SU(2) \otimes U(1) model
- All of the properties of electroweak interactions described by:
 - the intrinsic charges of the fermions
 - the SU(2) \otimes U(1) symmetry
 - g_W and g'_W : free parameters that need to be measured
- Along with QCD, Electroweak Theory is the Standard Model.

Electroweak Free Parameters

- Three free parameters in the Electroweak model:
 - The gauge coupling to W-field: g_W
 - The gauge coupling to *B*-field: g'_W
 - The vacuum expectation value : v (from the Higgs mechanism, next lecture)
- Can be extracted from three measurements. Choose the three most precise:
 - The electric charge, *e*
 - measured by the electric dipole moment
 - The Fermi Constant, *G_F* (precision: 0.9x10⁻⁵)
 - measured by the muon lifetime
 - The mass of the Z boson, M_Z (precision: 2.3x10⁻⁵)

$$e = \frac{g_W g'_W}{\sqrt{g_W^2 + g'_W^2}} \qquad M_Z = \frac{1}{2} v \sqrt{g_W^2 + g'_W^2} \qquad G_F = \frac{1}{\sqrt{2} v^2}$$
$$\sin^2 \theta_W = \frac{g'_W^2}{g_W^2 + g'_W^2} \approx 0.23 \qquad M_W = \frac{v g_W}{2}$$

Preci	ision Te	sts	of	Elec	ctroweak Theory
	Measurement	Fit	IO ^{meas} 0 1	-O ^{fit} l/o ^{meas} 2 3	• From lepewwg.web.cern.ch
$\Delta \alpha_{had}^{(5)}(m_Z)$ $m_Z [GeV]$ $\Gamma_Z [GeV]$	0.02750 ± 0.00033 91.1875 ± 0.0021 2.4952 ± 0.0023	0.02759 91.1874 2.4959			 Measured value and prediction from fit parameters
o ⁰ _{had} [nb] R _I A ^{0,I} A (P)	41.540 ± 0.037 20.767 ± 0.025 0.01714 ± 0.00095 0.1465 ± 0.0022	41.478 20.742 0.01645	F		 Bars show derivation between measurement and prediction, scaled to error (σ).
R _b R _c A ^{0,b}	$\begin{array}{c} 0.1403 \pm 0.0032 \\ 0.21629 \pm 0.00066 \\ 0.1721 \pm 0.0030 \\ 0.0992 \pm 0.0016 \end{array}$	0.1481 0.21579 0.1723 0.1038			 If the measurement is different from the prediction
A _{fb} A _b A _c A ₍ SLD)	$\begin{array}{c} 0.0707 \pm 0.0035 \\ 0.923 \pm 0.020 \\ 0.670 \pm 0.027 \\ 0.1513 \pm 0.0021 \end{array}$	0.0742 0.935 0.668 0.1481		_	 by ±1σ, graph shows 1. Three measurements deviate by ≥1σ
sin ² θ ^{lept} _{eff} (Q _{fb}) m _w [GeV] Γ _w [GeV]	0.2324 ± 0.0012 80.385 ± 0.015 2.085 ± 0.042	0.2314 80.377 2.092	-		 For 17 measurements we expect ~5 to deviate by ≥1σ.
m _t [GeV]	173.20 ± 0.90	173.26	0 1	2 3	• This fit is also sensitive to the mass of the Higgs boson!

Summary

- Electroweak force couples to the weak isospin and weak hypercharge quantum numbers of the fermions.
 - \rightarrow Fermions with weak isospin couple to three SU(2) bosons with g_W
 - Fermions with weak hypercharge a couple to one U(1) boson with g'_W
- Combined symmetry gives four bosons, with specific properties: W^+ , W^- , Z and γ
- The W and Z bosons are massive. $m_W \sim 80$ GeV, $m_Z \sim 91$ GeV
- Many precision measurements made of the properties of W and Z bosons properties and decays.
- All consistent with the Electroweak model described by three parameters: $g_{W,}$ $g'_{W,}$ v
- Friday: the Higgs mechanism!