- No slides on web yet ... sorry about that.
- Tutorial: Monday at 4pm? Monday at 5pm?

From Tuesday: Summary & Reading List

• Summary: the Standard Model is our current model for particle physics. But it doesn't explain all observations.

1

Charge-Parity Symmetry Violation in Charm Decays

- Charge-Parity Symmetry examines the difference between matter and anti-matter
- LHCb experiment at the LHC looked for difference in the decays of an anti-matter pair of *D*-mesons:
 - $D^0 = c\overline{u}; \ \overline{D^0} = \overline{c}u$
 - Γ is the decay rate, how quickly this decay takes place (units of energy)

 $\mathcal{A}_{\mathrm{C}P} = \frac{\Gamma(D^0 \to K^+ K^-) - \Gamma(\overline{D}^0 \to K^+ K^-)}{\Gamma(D^0 \to K^+ K^-) + \Gamma(\overline{D}^0 \to K^+ K^-)} - \frac{\Gamma(D^0 \to \pi^+ \pi^-) - \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^+ \pi^-) + \Gamma(\overline{D}^0 \to \pi^+ \pi^-)}$

• LHCb measured:

 $\mathcal{A}_{\rm CP} = [-0.82 \pm 0.21 ({\rm stat}) \pm 0.11 ({\rm syst})]\%$

 Clear different between behaviour of D⁰ and D
⁰!

http://lhcb-public.web.cern.ch/lhcb-public/

http://press.web.cern.ch/press/PressReleases/Releases2011/PR19.11E.html

5

	Natura	l Units		
SI units:	kg m s : [M] [L] [T] Natural	GeV l units: [Energy] [ve	c elocity	ħ y] [action]
For everydaNot so good	y physics SI units are a nation for particle physics: $M_{ m pro}$	atural choice: M _{(SH st} _{oton} ~10 ⁻²⁷ kg	udent)~7	/5kg.
	Energy GeV Momentum GeV/c	Time $(\text{GeV}/\hbar)^2$ Length $(\text{GeV}/\hbar c)$		
Can simplify fur	ther by \bigstar measuring speeds \bigstar measuring action/a	relative to <i>c</i> angular momentum/spin	n relati	ve to \hbar
Equivalent to se	Energy GeV Momentum GeV	Time GeV ⁻¹ Length GeV ⁻¹		IC Y

Review: Standard Model Forces

- Four interactions observed in nature: electromagnetic, strong, weak and gravity.
- The Standard Model describes interactions due to electromagnetic, strong, weak.
- Interactions between the fermions are transmitted by "force carrying" gauge bosons with *S*=1.
- Each force couples to a property of the fermions.
- The properties of each force are described mathematically by a symmetry group

Interaction	Coupling	Couples	Symmetry	Gauge	Charge	Mass
	Strength	То	Group	Bosons	e	${\rm GeV}$
Strong	$\alpha_s\approx 1$	colour charge	SU(3)	Gluons (g)	0	0
Electromagnetic	$\alpha = 1/137$	electric charge	U(1)	Photon (γ)	0	0
Weak	$G_F = 1 \times 10^{-5}$	weak hyercharge	${ m SU}(2)_{ m L}$	$ \left\{\begin{array}{c} W^{\pm} \\ Z^{0} \right. $	$\begin{array}{c} \pm 1 \\ 0 \end{array}$	$ 80.4 \\ 91.2 $
Gravity	0.53×10^{-38}	mass	?	Graviton?	0	0

9

Scattering Theory

- We are going to consider the interactions between **elementary particles**.
- Quantum Field Theory (relativity \oplus QM) suggests force is transmitted by force carrying particles.
- Review from Quantum Physics, Lecture 12, 13: Quantum Scattering Theory & the Born Approximation
- Born Series: we can think of a scattering in terms of series of terms

• Feynman diagrams make use of the Born series. Forces are transmitted by a finite number of the force-carrying bosons.

- In relativity time and space are equivalent therefore...
- We can "twist" this fundamental interaction any way we like.
- All these diagrams are equivalent, same probability amplitude $\sqrt{\alpha}$.

• When fermion "goes back in time", represents an antifermion.

Summary & Reading List

- The elementary fermions in the standard model interact due to the three forces: electromagnetic, weak and strong.
- Relativistic Field Theory approach allows us to write interactions as exchange of bosons.
- (Due to the different symmetry groups) different forces allow different interactions to take place.
- Key point from today: forces are described by exchange of bosons.
- Learn which are the allowed fermion interaction vertices for each force and the associated coupling constant.
- Suggested reading for next lecture: Griffiths chapter 6.