Particle Physics

Dr Victoria Martin, Spring Semester 2012
Lecture 5: Dirac Spinors
Describing Fermions and Bosons
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Notation Review

e A u sub- or super- script represents a four vector, e.g. x#, p*, pu
e u runs from 0 to 3

" =", p", 0%, p0*) = (E,ps, Dy, D-)

e This lecture also introduce other quantities with x index, u=0,1,2,3

e The scalar product of two four vectors

alb,, = a®® — a'bt — a?b? — 3

e The three dimension differential operator
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e Four dimension differential operator
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Schrodinger Equation

e Classical energy-momentum relationship:
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E=2_4V
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e Substitute QM operators:
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Schrodinger equation!

e 1st order in 0/0t; 2nd order in ¢/0x. Space and time not
treated equally.

Klein-Gordon Equation

e Relativistic energy-momentum relationship is:

E? = p?c® + m2ct
2 2 2
in covariant notation with c=1: pupu =E"—p°=m

. L2 0
e Again substitute the operators: P — —ihyy F = Zﬁa

e To give the relativistic Klein-Gordon equation:
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e This is the four-dimensional wave equation. Solutions are plane wave solutions
introduced in lecture 4:

P = e PT p-x:p“xuzh(lg-f—wt)
e The Klein-Gordon equation describes spin-0 bosons.

e KG equation is 2nd order in ¢/0t and 0/0x




Negative Energy & the Dirac Equation

e The relativistic energy-momentum equation is quadratic, negative energy
solutions are possible:

E?=p*4+m? = E=4p2+m?2

e (From last lecture) probability density for plane wave = 2E.
e Negative energy solutions imply negative probability density!

¢ In 1931 Dirac predicted that the negative energy solutions could describe
antiparticles - before its discovery! However negative probability density
was still a problem

e Dirac searched for 1st order relationship between energy and momentum,
using coefficients a! «? @* and g
.0
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e Need to find solutions for a« and g

Dirac Equation

e Solution is more elegant defining y* = g, y! = pa!, y* = pa?, v* = po’
e The Dirac equation can be written (with c=h =1) as:

0 -
(105 + 79 ) o= my

in covariant notation: mﬂaw = ma

e Multiplying the Dirac equation by its complex conjugate must give KG:
i i e m) (02 i G —m ) =0

e This leads to a set of conditions on the four coefficients p#:
(W)r=1 (')P=-1 (*)P=-1 (')=-1
(V.97 =27 +979 =0

p# are unitary and anticommute




The Gamma Matrices

¢ To satisfy unitarity and anticommutation the y* must be at least 4 x 4
matrices (exercise to check this!)

e There is a choice of representation, but the conventional one is:

7 = v = .
0 I —o* 0
e where I and 0 are the 2 x 2 identity and null matrices:
( 10 ) ( 0 0 )
I= 0=
0 1 00
e and the ¢’ are the 2 x 2 Pauli spin matrices:
01:(01) :(0) 03:<1 0)
10 i 0 0 -1

e »* are not four vectors! They do however remain constant under Lorentz
transformations

Solutions of the Dirac Equation

e The Dirac equation: (iv"9,, —m)y =0

e The wavefunctions are written as a combination of a plane wave and a
Dirac spinor u, a function of the four momentum, p* :

b = ulph)e
e For a particle at rest p# = (m, 0)
e The Dirac equation becomes:

ml 0
= < 0 —ml > N
e Defines four energy eigenstates, u”
e u' and u?> have E=m (fermions)

e u* and u* have E =—m (antifermions)
e u3(p) and ut(p) are often written as vi(p)=u*(—p) and v}(p)=u3(—p)




Spinors at rest

e The spinors of a particle are written as 1 x 4 matrices. (They are not four-
vectors.)

e Making the equation first order in all derivatives introduces new degrees of
freedom!

e For a particle at rest they take the trivial form:
1 0 0

ul =

= o o O

0
0
0
e The wavefunctions are:

wl _ ul e—zmt wQ _ u2 e—zmt ¢3 _ u3 €+'Lmt ¢4 _ u4 6+'Lmt

e The E=— m solution still exists!

e However we will see later that the probability density is strictly positive for
both particles and antiparticles.

Negative Energy Solutions

e We can’t escape negative energy solutions. How should we interpret
them?

e Modern Feynman-Stiickelberg Interpretation:

A negative energy solution is a negative energy particle which propagates
backwards in time or equivalently a positive energy anti-particle which
propagates forwards in time.

e~ (E<0) e’ (E>0)
Q
£ e++ = *e' >\/\Zvv = >\AZ\N
E>0 E<0 _
e~ (E>0) e~ (E>0)
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e This is why in Feynman diagrams the backwards pointing lines represent
anti-particles.
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Discovery of Positron
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C.D.Anderson, Phys Rev 43 (1933) 491
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« ¢ enters at bottom, slows down in the lead plate -
know direction

 Curvature in B-field shows that it is a positive particle
« Can’t be a proton as would have stopped in the lead

11

Spinors for moving particles

e For the derivation of these see Griffiths Pp. 231-234

e Using v for antiparticles

Fermions:
1 0
1_ 0 ul = 1
p:/(E +m) (pz —ipy)/(E +m)
(pz +1ipy)/(E +m) —p:/(E +m)
Antifermions:
p:/(E+m) (pz —ipy)/(E +m)
| wrim)/Erm | | -/ EEm)
1 0
0 1

e The u and v are the solutions of

(Y"'pu —m)u =0

(vp, +m)v =0
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Fermion Wavefunctions

e The two different solutions for each of fermions and antifermions corresponds to the
two possible spin states.

e A fermion with 4-momentum p is either:
w= u'(p)e-r= spin t parallel top,
w= up)e-r* spin | antiparallel top,
e An antifermion with 4-momentum p is either:
y= vi(p)er= = ui(-p)e-i»> spin t parallel top,

w= v(p)e rx = wui(—p)e-iCPx spin | antiparallel to p,

Spinors, u’, u?, v1,v? are only eigenstates of Sz for p. = +|[p]

However u’, u?, v, v’ do describe a complete set of solutions for the Dirac equation
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Helicity

e Define helicity, #, the component of the spin along a particle’s direction of
flight. = =
K-

e For a §=% fermion, the project of spin along any axis can only be +V3.

e For a S=% fermion, eigenvalues of & are 1.
e We call A=+1, “right-handed”, h=—1 “left handed”.

2 7z
h=+1 =-1

“right-handed” “left-handed”
e Massless fermions with (p=E) are purely left-handed (only u?)
e Massless antifermions are purely right-handed (only v/)

e Non-massless particles need a superposition of ! and «? to fully describe
the state

e Non-massless antiparticles need a superposition of v/ and »?.
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Handedness and Projection Operators

e The concept of handedness is very useful and plays a key role in describing
the interactions of the forces.

e Helicity not Lorentz invariant instead use Lorentz invariant chirality.

e LH projection operator P. = (I — y°)/2 projects out left-handed chiral state
e RH projection operator Pz = (I +y°)/2 projects out right-handed chiral state

0 1
where y5 = iy%yly?y? is 4x4 matrix: 75 = < 1 0 )

It has the properties: (y5)!=1, {y5,y} =75y +yy° =0

e For massless particles or high energies (E>>m) chirality & helicity are the same.

e P, +Pr=1= y=PLy+ Pry, a state can always be written as the sum of LH and
RH components

e Also, P’ =P¢ P?=Pr PLPr =0
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Summary and Reading List

e The Dirac Equation describes spin-%2 particles.
(i7" 0, — m)y = 0
e Solutions include four component spinors, # and v.

(Y'pu —m)u=0 (y"pu+mjv =0

Y =u(p)e”" Y =uv(p)e T
o 4, n=0,1,2,3 are 4 x 4 Gamma matrices

e Four components describe e.g. two spin states of the electron and two spin
states of the positron.

e Negative energy solutions, E=—\(p*+m?) are predicted by the Dirac equation.

e Modern interpretation is to is reverse the sign of x* and p#: giving a positive
energy anti-particle travelling forwards in time.

e Any particle can be written in terms of left handed and right handed
components: y = (I — )y + (I +p)y = yr+yr

e Spin-1 bosons are described by the polarisation vector, &: A4* = & (p ; s) e P>
e Next Lecture: The Electromagnetic Force. Griffiths 7.5 & 7.6
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