
Interactions and Particles

•Standard Model describes the interactions of the known fermions.

•Three forces:

•Electromagnetic (QED) - exchange 
of photons, !, between particles 
with electric charge

•Strong (QCD) - exchange of colour-
charged gluons, g, between 
particles with colour charge

•Weak - exchange of W+, W", Z0 
bosons between particles with 
weak isospin and hypercharge  

•Plus Higgs boson, H, exchange 
between massive boson and fermions
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Lorentz Notation
•µ, # on quantities are Lorentz indices and run from 0 to 3

•Quantities with repeated Lorentz indices are implicitly summed over.  
e.g. scalar product of a four vector:

•Metric tensor gµ#:

•Scalar product of two four-vectors, implicitly uses the metric tensor:

•The factors of +1 and !1 are due to the metric tensor.

•Objects with two different indices e.g. µ and #, multiplied by gµ# all 
the indices to be changed to be the same.

gµν =





+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





a · b = aµbµ = gµνaνbµ = +1× (a0b0)− 1× (a1b1)− 1× (a2b2)− 1× (a3b3)

pµpµ = (p0)2 − (p1)2 − (p2)2 − (p3)2
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Dirac Equation
• Dirac Equation provides linear relationship between energy and momentum, 

consistent with relativity.

• Use momentum and energy operators and parameters !0, !1, !2, !3 in the 
relationship:

• Equation is solved using making it consistent with: 

• Solutions for !0, !1, !2, !3 are 4 x 4 matrices with the properties:

p̂ = −i��� Ê = i� ∂

∂t
i

�
γ0 ∂ψ

∂t
+ �γ · ��

�
ψ = mψ

E2 = �p 2c2 + m2c4 = �p 2 + m2

(γ0)2 = 1 (γ1)2 = −1 (γ2)2 = −1 (γ1)3 = −1
{γi, γj} = γiγj + γjγi = 0

γ0 =





1 0 0 0
0 1 0 0
0 0 −1 0
1 0 0 −1



 γ1 =





0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0



 γ2 =





0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



 γ3 =





0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0





• Also use !5 = i !0 !1 !2 !3 
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Spinors
•In covariant form, Dirac Equation is:

•Solutions wavefunctions describing the motion of spin-! particles (quarks 
and leptons).  For a four momentum pµ                                

•There u and v terms are known as spinors.  Spinors have four components 
and are solutions of: 

•For a given momentum, there are four solutions:

• spin-up particle

• spin-down particle

• spin-up anti-particle

• spin-down anti-particle

(iγµ∂µ −m)ψ = 0

ψ = u(pµ)e−ip·x

(γµpµ −m)u = 0 (γµpµ + m)v = 0

ψ = v(pµ)e+ip·x

•Four spinor solutions for p=0 are:

u1 =





1
0
0
0



 u2 =





0
1
0
0



 v1 =





0
0
0
1



 v2 =





0
0
1
0
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Helicity and Handedness
• Helicity, ! is the component of the spin along a particle’s direction of flight.

• For a S=" fermion, eigenvalues of ! are ±1.

• h=+1 is “right-handed”, 

• h=#1 is “left handed”.

• Projection operators can be use to find left-handed and right-handed components of a 
fermion   PL = ! (1 " #5)    PR = ! (1 + #5)

• The four spinor solutions can also be characterised as:

• Left-handed particle

• Right-handed particle

Pause for Breath…
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•Have found solutions to the Dirac equation which are also eigenstates        but 
only for particles travelling along the z axis.

•Not a particularly useful basis 

•More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of  commuting observables.

(Appendix II)•Can’t use z component of spin:

•Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows
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Helicity
! The component of a particles spin along its direction of flight is a good quantum 

number:

! Define the component of a particles spin along its direction of flight as HELICITY:

•If we make a measurement of the component of spin of a spin-half particle
along any axis it can take two values       , consequently the eigenvalues
of the helicity operator for a spin-half particle are:

“right-handed” “left-handed”Often termed:

! NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
! In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit

are the HELICITY eigenstates the same as the CHIRAL eigenstates

ĥ =
�S · �p

|�S||�p|
=

2�S · �p

|�p|

•Left-handed anti-particle

•Right-handed anti-particle

• All quarks and charged leptons (e, µ, $) can be left-handed and right-handed.

• Neutrinos are observed to be left-handed only.

• The values for weak isospin are different for left-handed and right-handed 

fermions.  
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Standard Model Fermion Charges
• Key quantum numbers: charge (Q), isospin (IZ), baryon number (B), lepton number 

(L, Le, Lµ, L$), weak isospin (T3), hypercharge (Y = 2 (Q ! T3)).

• Quarks also carry colour charge: red, green and blue.

• These are intrinsic charges - cannot be removed
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Hadrons: Mesons and Baryons

•At low energy quarks are found in colour-neutral bound states called 
hadrons.

•Mesons are bosons (S=0,1,...) consisting of quark and anti-quark.  
Colour structure of wavefunction:

•Baryons are fermions (S=%, 3/2, ...) consisting of three quarks.          
Colour structure of wavefunction:

•Anti-baryons have three anti-quarks

•Baryons wavefunctions must be antisymmetric under exchange of any two 
fermions e.g. & =  'c 'f 'S 'L  =  'colour 'flavour 'Spin 'Angular-momentum 

χc =
1√
3

�
rr̄ + bb̄ + gḡ

�

χc =
1√
6

[rgb− rbg + gbr− grb + brg − bgr]
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Feynman Diagrams 

Initial state 
particles on the 

left

Final state 
particles on the 

right
“virtual” bosons 
are exchanged 
in the middle

Each interaction vertex  
has a coupling constant

 fermions  antifermions  photons,
W, Z bosons

 gluons H bosons

Times flows from left to right

•Feynman diagram illustrate processes to fixed order in perturbation theory.

•Lowest order Feynman diagrams (with the smallest number of bosons 
exchange) given reasonable estimate for weak and QED processes.

•Feynman rules applied to calculate the matrix element, M, for a given 
process.
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Measuring Scattering and Decays

•Standard Model can be tested by looking at particle scatterings and 
decays.

•Measure decay rates and scattering cross sections.

9

Fermi’s Golden Rule
•Fermi’s Golden Rule relates the transition rate from initial state i to final 

state f: Ti(f

•Transition rates  calculated from two quantities:

! The amplitude or matrix element for the process, M
! The available phase space (density of final states), )

•M contains the dynamics of the process.  It can be calculated (to a given 
order in perturbation theory) from Feynman diagrams.  

•Phase space ) contains the kinematic constraints.  

Ti→f =
2π

� |M|2ρ

•Transition rate Ti(f is related to decay rates * and cross sections + 

Γ =
2π

� |M|2ρ σ =
2π

� |M|2 ρ

fi
with fi incident flux

decay rate scattering cross section 
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Measuring Scattering

• Incident flux: the number of particles per unit area per unit time

• Scattered flux: number of particles per unit time scattered into solid angle d"

• Measure the differential cross section

• Total cross section (Lorentz invariant)

• Fire a beam of particles at a target, or another beam.

• The effective area of the interaction is the cross section, ".  

• Measured in units of area, usually barn, 1b=10!28m2

dσ

dΩ
≡ scattered flux

initial flux

σ =
�

dσ

dΩ
dΩ

• exclusive cross section to given final state: e.g. "(pp#WH) or 

• inclusive cross section "(pp#anything) sum of all possible exclusive cross 
sections

• Counting number of event observed e.g. N(pp#WH) = "(pp#WH) $ %Ldt
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Measuring Decays
•Measure the lifetime of a particle in its own rest frame.

•Define the decay rate, &: the probability per unit time the particle will 
decay: 

•Mean lifetime is $ =1 / & (natural units).  

• For ! in seconds can use ! = ℏ / ! 

dN = −ΓNdt N(t) = N(0)e−Γt

•Most particles decay more than one different route: add up all decay 
rates to obtain the total decay rate:

Γtot =
n�

i=1

Γi

•The lifetime is the reciprocal of !tot: τ =
1

Γtot

•The different final states of the particle are known as the decay modes.

•The branching ratio for the ith decay mode is: Γi/Γtot

12



Feynman Rules for QED

• Matrix element M is product of all factors
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Feynman Rules for QED
•It should be remembered that the expression 

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual
photon.  If we are then presented with a new Feynman diagram 
we don’t want to go through the full calculation again. 
Fortunately this isn’t necessary – can just write down matrix element 
using a set of simple rules 

Basic Feynman Rules:
Propagator factor for each internal line

(i.e. each real incoming or outgoing particle)

(i.e. each internal virtual particle)
Dirac Spinor for each external line

Vertex factor for each vertexe– !–

e+ !"#
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Basic Rules for QED

outgoing particle

outgoing antiparticle
incoming antiparticle

incoming particle

spin 1/2

spin 1 outgoing photon
incoming photon

External Lines

Internal Lines (propagators)
! $

spin 1          photon

spin 1/2       fermion

Vertex Factors
spin 1/2       fermion (charge -|e|)

Matrix Element =  product of all factors

u and v are 
spinors 
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Feynman Rules for QCD

αS =
g2

S

4π

•Gluons propagate QCD, carry colour and anti-colour, described by 8 Gell-
Mann matrices, '.

14



Feynman Rules for Weak

gµν

q2 −m2
W

1
2
√

2
gW γµ(1− γ5)

gµν

q2 −m2
Z

1
2gZ γµ(cf

V − cf
Aγ5)

gµν

q2

propagator
interaction 

vertex

W-boson 

Z-boson

photon, !
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Feynman Rules for QED
•It should be remembered that the expression 

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual
photon.  If we are then presented with a new Feynman diagram 
we don’t want to go through the full calculation again. 
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Basic Rules for QED

outgoing particle

outgoing antiparticle
incoming antiparticle

incoming particle

spin 1/2

spin 1 outgoing photon
incoming photon

External Lines

Internal Lines (propagators)
! $

spin 1          photon

spin 1/2       fermion

Vertex Factors
spin 1/2       fermion (charge -|e|)

Matrix Element =  product of all factors
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Basic Rules for QED

outgoing particle

outgoing antiparticle
incoming antiparticle

incoming particle

spin 1/2

spin 1 outgoing photon
incoming photon

External Lines

Internal Lines (propagators)
! $

spin 1          photon

spin 1/2       fermion

Vertex Factors
spin 1/2       fermion (charge -|e|)

Matrix Element =  product of all factors

e γµ

• Quark couplings have extra factor of Vuidj

•  PL=(1!!5)/2 is the Left Handed projection operator, thereforeW-boson 
interactions only act on left-handed components of fermions

• For low energy interactions q << mW: effective propagator is gµ(/mW2

• Left-handed W interactions known 
as V"A theory

! "µ gives a vector current (V)

! "µ"5 gives an axial vector current (A)

•Photon interactions are purely vector

•Z-boson interactions contain both 
vector and axial-vector terms
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Feynman Rules Examples

•Follow fermion lines backwards!

Prof. M.A. Thomson Michaelmas 2011 269

!Finally we can consider the quark – anti-quark annihilation

q

q

QCD vertex:

with
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q q

qq

• Consequently the colour factors for the different diagrams are:
e.g.

q q

qq

q q

q q

Colour index of adjoint spinor comes first

16



Squaring the Matrix Element

•Squaring spinors, u and v to get terms only dependent on momentum 
is beyond the scope of the course.  You may have to write down M 
using Feynman rules, but you won’t have to square it.

•Usually M2 is for a particular spin configuration.

•To calculate an unpolarised cross-section need to average over initial 

state spins and sum over possible spins configurations.

•e.g. for a electron-positron scattering.  

•  Sum over all possible spin combinations.

•Unpolarised electrons are ! spin up, ! spin down.

•Unpolarised positrons are ! spin up, ! spin down.

•Therefore average is by ".

17

QCD Potential
•At short distances gluons display a potential 

of 

•(review where the 4/3 comes from!)

•Gluons also carry colour charge and can 
therefore self-interact.

•To separate an quark anti-quark pair to 
long distances

•A gluon flux tube of interacting gluons is 
formed.  Energy ~1 GeV/fm.

•Gluon-gluon interactions are responsible for 
holding quarks in mesons and baryons.

VQCD(r) ∼ λr

Vqq̄ = −4
3

αS

r

VQCD(r) = −4
3

αS

r
+ λr

18



Gluon self-Interactions and Confinement

Prof. M.A. Thomson Michaelmas 2011 257

! Gluon self-interactions are believed to give 
rise to colour confinement

! Qualitative picture:
•Compare QED with QCD

e+

e-

q

q
•In QCD “gluon self-interactions squeeze 

lines of force into a flux tube”

q q
! What happens when try to separate two coloured objects  e.g. qq

•Form a flux tube of interacting gluons of approximately constant
energy density 

•Require infinite energy to separate coloured objects to infinity
•Coloured quarks and gluons are always confined within colourless states
•In this way QCD provides a plausible explanation of confinement – but

not yet proven (although there has been recent progress with Lattice QCD)
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Hadronisation and Jets
!Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at
high velocity

ii) Colour flux tube forms
between quarks

iii) Energy stored in the
flux tube sufficient to 
produce qq pairs

q q

q q

q qq q

iv) Process continues
until quarks pair
up into jets of
colourless hadrons

! This process is called hadronisation. It is not (yet) calculable.
! The main consequence is that at collider experiments quarks and gluons

observed as jets of particles

e–

e+
!

q

q

Jets

•This process is called hadronisation. It is not (yet) calculable. 

•The main consequence is that at collider experiments quarks and 
gluons observed as jets of particles

(i) Initially Quarks separate at 
high velocity

(ii) Colour flux tube forms 
between quarks

(iii) Energy stored in the flux tube 
sufficient to produce qq̅ pairs

(iv) Process continues until quarks 
pair up into jets of colourless 
hadrons

•Consider a quark and anti-quark produced in electron positron annihilation

Gluon self-Interactions and Confinement
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Hadronisation and Jets
!Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at
high velocity

ii) Colour flux tube forms
between quarks

iii) Energy stored in the
flux tube sufficient to 
produce qq pairs

q q

q q

q qq q

iv) Process continues
until quarks pair
up into jets of
colourless hadrons

! This process is called hadronisation. It is not (yet) calculable.
! The main consequence is that at collider experiments quarks and gluons

observed as jets of particles

e–

e+
!

q

q
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Running Coupling Constants
•The effective mass and charge of the fermions 

change depending on the momentum transferred 
by the boson probing the interaction.

•Small effect for QED - coupling strengthens at 
higher momentum transfer, Q.

•Different for QCD due to gluon self-couplings.  
Coupling strengthens strongly at low Q.  When )S 
> ~1, perturbation theory no longer useful

Nuclear and Particle Physics Franz Muheim 12
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!"#$%&'()*"'+,-',)!
!"#$%&"'()*($+$,"#)-.&%$"/,(/%"$#.,"/)%

! 0($123" /4(%)"(.(,)%4".%"(."(.++(5/4".%,$4

.-*##/
6)"($-7"89(.#):%5(*#$$($+$,"#)%(

,#$."/)%(.%5(.%%/'/+."/)%

)*(;/#":.+($+$,"#)%<7)4/"#)%(7./#4

0*122'&'(
=.#$(,'.#&$ .%5(-.44 )*($+$,"#)%()%+8(;/4/>+$(

."(;$#8(4')#"(5/4".%,$4

! /%,#$.4$4(?/"'(?/"' +.#&$#(-)-$%":-("#.%4*$#

@+.44/,.+(+/-/"
A1 0(B((((((((((((((! ! 0(C2CDE

F"(4')#"(5/4".%,$4
A1 0(GHB(I$JK1 ! ! 0(C2C1L

#$#$
% &&ee

12

Running of

! specifies the strength of the strong

interaction

! BUT just as in QED, isn’t a constant, it

“runs”

! In QED the bare electron charge is screened

by a cloud of virtual electron-positron pairs.

! In QCD a similar effect occurs.

In QCD quantum fluctuations lead to a ‘cloud’ of

virtual pairs

q

q
q

q

q

q

q

one of many (an infinite set)

such diagrams analogous to

those for QED.

In QCD the gluon self-interactions ALSO lead to a

‘cloud’ of virtual gluons

g

q
g

q

q

g

g

one of many (an infinite set)

such diagrams. Here there is no

analogy in QED, photons don’t

have self-interactions since they

don’t carry the charge of the in-

teraction.

Dr M.A. Thomson Lent 2004
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6 41. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 41.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.) See full-color
version on color pages at end of book.

Measurement of R

•NC=3, one of the key pieces of evidence for three quark colours.

•At quark thresholds, *s ~ 2mq “resonances” occur as bound states of qq ̅ 
more easily produced. 

•Steps at ~4 and ~10 GeV due to charm and bottom quark threshold

•At *s ~ 100 GeV, Z-boson exchange takes over. 

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc

�

q

e2
q

e2
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Electron-Proton Scattering

• Parton model states that photon scatters elastically from partons within the 
proton: three valance quarks (u, u, d); sea quarks in pairs (+u, d ̅d, s ̅s, c̅c, …) and 
gluons, g

• Key parameter x, fraction of proton momentum carried by parton:  0 < x < 1

• Parton distribution functions, q(x) for each quark flavour type.  Represent 
represent the probability to find a parton in the proton with energy between x 
and x+dx

!!"!!#"$%&!p1

!!'()*)++*$(,"*&!p2

-.$/"("0!"!, p3

12(*3$4
"!5)(!67

!!!'$(*)+!
!!-.$/"(2+,

!!8$0()+2.!9"*&!p4

• Electromagnetic e!p ( e!p 
scattering is used to probe the 
structure of the proton.

• Deep inelastic scattering (DIS)
occurs when the proton breaks 
up and reveals partonic 
structure of the proton.
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•In terms of the proton momentum

p

e–

e– !
•But for the underlying quark interaction

(elastic, i.e. assume quark does not break up )
•Previously derived the Lorentz Invariant cross section for e–"– # e–"–

elastic scattering in the ultra-relativistic limit (handout 4 + Q10 on examples sheet). 
Now apply  this to e–q # e–q

is quark charge, i.e.

•Using
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(3)

!This is the expression for the differential cross-section for elastic e–q
scattering from a quark carrying a fraction x of the proton momentum.

• Now need to account for distribution of quark momenta within proton
! Introduce parton distribution functions such that is the number

of quarks of type q within a proton with momenta between
Expected form of the parton distribution function ?

Single Dirac 
proton

Three static 
quarks

Three interacting 
quarks

+higher orders

1 ! 1 ! 1 ! 1
22



Cabibbo-Kobayashi-Maskawa Matrix 
• Mass eigenstates and weak eigenstates of quarks are not identical.

!Decay properties measure mass eigenstates with a definite lifetime and decay 
width

!The weak force acts on the weak eigenstates.

• Weak eigenstates are admixture of mass eigenstates, conventionally described 
using CKM matrix a mixture of the down-type quarks: 

• The CKM matrix is unitary, VCKM†VCKM = 1 implies nine “unitarity relations”

• The most frequently discussed is (1st row # 3rd column):




d�

s�

b�



 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d
s
b



 mass 
eigenstates

weak 
eigenstates

VudV ∗
ub + VtdV ∗

tb + VcdV ∗
cb = 0




V ∗

ud V ∗
cd V ∗

td
V ∗

us V ∗
cs V ∗

ts

V ∗
ub V ∗

cb V ∗
tb








Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



 =




1 0 0
0 1 0
0 0 1
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The Unitarity Triangle

•Forms a triangle in the complex plane:

•Dividing through by VcdVcb*:

•This unitarity triangle is often use to present measurements of CP violation 
in B-meson decay.

•Lengths and angles of the triangle are:

VudV ∗
ub + VtdV ∗

tb + VcdV ∗
cb = 0

1.4 Violation in the Standard Model 21

A

(b) 7204A5
7–92

1

VtdVtb
|VcdVcb|

VudVub
|VcdVcb|

VudVub

VtdVtb

VcdVcb

0
0

(a)

Figure 1-2. The rescaled Unitarity Triangle, all sides divided by .

The rescaled Unitarity Triangle (Fig. 1-2) is derived from (1.82) by (a) choosing a phase convention
such that is real, and (b) dividing the lengths of all sides by ; (a) aligns one side
of the triangle with the real axis, and (b) makes the length of this side 1. The form of the triangle
is unchanged. Two vertices of the rescaled Unitarity Triangle are thus fixed at (0,0) and (1,0). The
coordinates of the remaining vertex are denoted by . It is customary these days to express the
CKM-matrix in terms of four Wolfenstein parameters with playing
the role of an expansion parameter and representing the -violating phase [27]:

(1.83)

is small, and for each element in , the expansion parameter is actually . Hence it is sufficient
to keep only the first few terms in this expansion. The relation between the parameters of (1.78)
and (1.83) is given by

(1.84)

This specifies the higher order terms in (1.83).
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coordinates of the remaining vertex are denoted by . It is customary these days to express the
CKM-matrix in terms of four Wolfenstein parameters with playing
the role of an expansion parameter and representing the -violating phase [27]:

(1.83)

is small, and for each element in , the expansion parameter is actually . Hence it is sufficient
to keep only the first few terms in this expansion. The relation between the parameters of (1.78)
and (1.83) is given by

(1.84)

This specifies the higher order terms in (1.83).
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• Triangle has a finite area only if relative complex phase between CKM elements

α ≡ arg
�
− VtdV ∗

tb

VudV ∗
ub

�
β ≡ arg

�
−VcdV ∗

cb

VtdV ∗
tb

�
γ ≡ arg

�
−VudV ∗

ub

VcdV ∗
cb

�
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C, P and T
• Three important discreet symmetries: Charge 

Conjugation (C), Parity (P) and Time reversal (T).

• C: changes sign of charge (particle ↔ anti-particle)

• P: spatial inversion, reserves helicity.               
Fermions have P=+1, antifermions P=!1 

• T: changes the initial and final states

• Gluons and photons have C =!1, P=!1

•C and P are conserved in QED and QCD, maximally 

violated in weak

• CPT turns a forward-going particle with LH helicity into 
backward-going antiparticle with RH helicity.

• CPT Theorem states all interaction invariant under 
combined operation of CPT

CPT
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Neutral Meson Mixing

• e.g. neutral kaon mixing   K0 " K̅0      s ̅ d  "   s d ̅ 
•  Three useful eigenbases:

• Flavour eigenstates K0, K̅0  

• CP eigenstates

• Decay eigenstate with measurable mass and 

lifetime.  If these are not equal to CP eigenstates 

indicates the amplitudes K0 # K̅0  and  K̅0  # K0 

not equal.  

•Neutral mesons can transform into their antiparticles by exchanging two 
W-bosons (2nd order weak interaction)

|K1� =
1√
2

�
|K0� − |K0�

�
CP = +1

|K2� =
1√
2

�
|K0�+ |K0�

�
CP = −1

|KS� =
1
N

�
(1− �)|K0� − (1 + �)|K0�

�

|KL� =
1
N

�
(1 + �)|K0�+ (1− �)|K0�

�
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CP Violation

•CP turns a particle into its antiparticle with opposite helicity: it is a 
symmetry between matter and anti-matter

•CP violation occurs when particles related by CP symmetry do not interact 
in the same way.

•CP violation is only observed in weak force interactions.

•Most often measured by looking a neutral mesons decays (e.g. neutral 
kaons, neutral B-mesons)

• In the Standard Model CP violation is accommodated by a complex phase in 
the CKM matrix.  This ensures the unitarity triangles have a finite area
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Neutrinos

• In the Standard Model only left-handed neutrinos and right-handed antineutrinos 
are described.

• Neutrino experiments have observed neutrino oscillations e.g.  #e ( #µ 
implying neutrinos have mass.

• Mass eigenstates of the neutrinos are not identical to the flavour eigenstates.

• Flavour eigenstates are #e, #µ, #$  - interact with the W and Z boson.

• Mass eigenstates are #1, #2, #3 - propagate through matter / vacuum.

• Eigenstates related by PMNS matrix:

• Measurements of neutrino oscillations used to find mixing angles and ,m2 
between mass eigenstates.




νe

νµ

ντ








Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



 =




ν1

ν2

ν3
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Two Neutrino Mixing
• Let’s start with the case of two neutrino mixing.  Write the mixing matrix in 

terms of a mixing angle $12 (to reflect the unitarity of the matrix):

• The time evolution of the two mass eigenstates is:

• For a initial state of pure $e, $e(0)=1, time evolution:

• Probability for an $e to turn into $µ: P($e # $µ) = |$µ(t)|2

ν1(t) = ν1(0)e−iE1t = [νe(0) cos θ12 + νµ(0) sin θ12] e−iE1t

ν2(t) = ν2(0)e−iE2t = [−νe(0) sin θ12 + νµ(0) cos θ12] e−iE2t

νµ(t) = (cos θ12 sin θ12)(e−iE1t − e−iE2t)
νe(t) = (1− cos θ12 sin θ12)(e−iE1t − e−iE2t)

�
νe

νµ

�
=

�
cos θ12 sin θ12

− sin θ12 cos θ12

� �
ν1

ν2

�

P (νe → νµ) = (cos θ12 sin θ12)2(eiE1t − eiE2t)(e−iE1t − e−iE2t)

=
�
sin(2θ12) sin

�
E2 − E1

2
t

��2

=
�
sin(2θ12) sin

�
∆m2

12

4E
t

��2
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Summary of Electroweak Unification
•We have recovered the behaviour of the W±, Z and !

!We introduced an SU(2) symmetry (3 bosons) coupling to weak isospin 
with a coupling constant gW

!We introduced a U(1) symmetry (1 boson) coupling to weak hypercharge 
with a coupling constant g’W

!Together predicts four bosons we identify with W+, W", Z and !
!Electroweak Theory is often called SU(2) ⊗ U(1) model

•All of the properties of electroweak interactions described by:

• the intrinsic charges of the fermions

• the SU(2) ⊗ U(1) symmetry

• gW and g’W: free parameters that need to be measured

•Along with QCD, Electroweak Theory is the Standard Model.
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Higgs Mechanism

• V(,) is symmetric: to maximise the symmetry of the system choose ,=0.

• A circle of values minimise the potential at ,=,0 - !v  with 

• The choice of a particular value of ,0  spontaneously breaks the symmetry.

•When the symmetry is spontaneously broken three of these degrees of 
freedom are fixed and used to give mass to W+, W", Z0.

Im! 

Re! 

V(!) 

V (φ) = −µ2φ†φ + λ(φ†φ)2

|φ0| =
µ√
2λ

φ =
�

φ+

φ0

�
=

1√
2

�
φ1 + iφ2

φ3 + iφ4

�• , is complex function: 
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Introducing the Higgs Boson

•Consider a fluctuation of the Higgs field about its minimum:

•Substitute                                  into V(,) and expand to second order 
in h(x):

•In quantum field theory a term quadratic in the field describes a 
particle’s mass.

•This fluctuation around the minimum of the potential describes a 
spin-0 particle with a mass 

•The Higgs boson!

φ(x) = φ0 + h(x) =
1√
2

�
0

v + h(x)

�

φ(x) = 1√
2
(v + h(x))

}
= . mH2

m =
√

2λv

V (φ) = −µ2

�
v + h(x)
√

2

�2

+ λ

�
v + h(x)
√

2

�4

= . . . = V (φ0) + λv2h2 +O(h(x)3)
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Higgs Searches
•Look for decays of the Higgs boson at the LHC

The strength of Higgs boson couplings in 
order:

1. W-boson
2. Z-boson
3. fermions: from heaviest to lightest
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Higgs boson also couples to photon pairs through W-boson and 
top-quark loops
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