Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering

★Feynman Diagrams continued
★Decays, Scattering and Fermi's Golden Rule
★Anti-matter?

Notation Review

- A μ sub- or super- script represents a four vector, e.g. x^{μ} , p^{μ} , p_{μ}
 - μ runs from 0 to 3

$$p^{\mu} = (p^0, p^1, p^2, p^3) = (E, p_x, p_y, p_z)$$

- This lecture also introduce other quantities with μ index, $\mu=0,1,2,3$
- The scalar product of two four vectors

$$a^{\mu}b_{\mu} = a^{0}b^{0} - a^{1}b^{1} - a^{2}b^{2} - a^{3}b^{3}$$

• The three dimension differential operator

$$\vec{\bigtriangledown} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

• Four dimension differential operator

$$\partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

Scattering Theory

- Consider the interactions between **elementary particles**.
- Review from Quantum Physics, Lecture 12, 13: Quantum Scattering Theory & the Born Approximation
- Born Series: we can think of a scattering in terms of series of terms

- 1 boson exchange is more probable than 2 boson exchange which is more probable than 3 boson exchange...
- The total probability for a scattering is the sum of all possible numbers of boson exchange:

 $\mathcal{M}_{tot} = \mathcal{M}_1 + \mathcal{M}_2 + \mathcal{M}_3 \dots$

• Feynman diagrams make use of the Born series to calculate the individual terms in the matrix elements series \mathcal{M}_i

Drawing Feynman Diagrams

The Feynman Rules

Each part of the feynman diagram has a function associated with it. Multiply all parts together to get a term in the Born expansion

Initial and final state particles have wavefunctions:

- Spin-0 bosons are plane waves
- Spin-1/2 fermions have Dirac spinors
- \diamond Spin-1 bosons have polarization vectors $\mathcal{E}^{\!\mu}$
- Vertices have dimensionless coupling constants:
 - ♦ Electromagnetism has $\sqrt{\alpha} = e$
 - \diamond Strong interaction has $\sqrt{\alpha_s} = g_s$
 - \diamond Weak interactions have g_L and g_R (or c_A and c_V)
- Virtual particles have propagators, q^µ is momentum transferred by boson
 Virtual photon propagator is 1/q²
 - \diamond Virtual *W/Z* boson propagator is $1/(q^2 M_W^2)$; $1/(q^2 M_Z^2)$
 - ♦ Virtual fermion propagator is $(\gamma^{\mu}q_{\mu} + m)/(q^2 m^2)$

 γ^{μ} (Gamma matrices) and spinors ... next lecture

Plane Waves

• Plane wave can be used to describe spinless, chargeless particles:

$$\psi = e^{-ip \cdot x} \qquad p \cdot x = p^{\mu} x_{\mu} = \hbar(\vec{k} \cdot \vec{x} - \omega t)$$

• Define the **probability current** for the particle

 $j_{\mu} = i \left[\psi^* \,\partial_{\mu} \psi - \psi \,\partial_{\mu} \psi^* \right]$

• Note this is a four-dimensional quantity:

 $j^{\mu} = (j^0, \vec{j})$

• For a scattered particle changing momentum $p_i \rightarrow p_f$:

Wave for initial state $\psi_i = e^{-ip_i \cdot x}$ $\psi_f = e^{-ip_f \cdot x}$ $j_\mu(i \to f) = i \left[\psi_f^* \partial_\mu \psi_i - \psi_i \partial_\mu \psi_f^* \right]$ $= (p_i + p_f) e^{-i(p_i - p_f) \cdot x}$

Matrix Element for Spinless Scattering

Hypothetical interaction in which two *spinless* charged particles exchange one virtual photon

Vertex
Couplings

$$\mathcal{M} = \frac{\alpha}{q^2} (p_1 + p_3)(p_2 + p_4) \, \delta^4(p_1 + p_2 - p_3 - p_4)$$

Photon
Propagator
Propagator
(in terms of Mandelstam variables) $\mathcal{M} = \frac{\alpha \, (s - u)}{t}$

Mandelstam Variables

Introduce the Lorentz invariant scattering variables: s, t and u

For highly relativistic elastic scattering $p \sim E, m \ll E:$ $s = 4 p^{*2}$ $t = -2 p^{*2} (1 - \cos \theta^*)$ $u = -2 p^{*2} (1 + \cos \theta^*)$ with $p^* = p_1 = p_2$ is the CM momentum of the particles, and θ^* is the CM scattering angle

Measuring Interactions

- To test the Standard Model (or any other model) of particle physics, relate Feynman diagrams with measurable quantities.
- Two main measurable processes in particle physics:
 - **\star** particle decay e.g. $A \rightarrow c d$
 - ⇒ measure decay width, Γ ($A \rightarrow c d$)
 - **\star** scattering e.g. $a b \rightarrow c d$
 - \rightarrow measure cross section, σ (*a b* \rightarrow *c d*)
- Related to \mathcal{M} (calculated from Feynman diagrams) through Fermi's Golden Rule:

$$\Gamma \sim \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho \qquad \qquad \sigma \sim \frac{2\pi}{\hbar} |\mathcal{M}|^2 \rho$$

 $\bullet \rho$ is the phase space - a purely kinematic quantity

(see tutorial sheet and/or Griffiths Annendix R)

Measuring Decays

- Measure the lifetime of a particle in its own rest frame.
- Define the decay rate, Γ : the probability per unit time the particle will decay: $dN = -\Gamma N dt$ $N(t) = N(0)e^{-\Gamma t}$
- Mean lifetime is $\tau = 1 / \Gamma$ (natural units).
 - For τ in seconds can use $\tau = \hbar / \Gamma$
- Most particles decay more than one different route: add up all decay rates to obtain the total decay rate: $\sum_{n=1}^{n}$

$$\Gamma_{\rm tot} = \sum_{i=1}^{n} \Gamma_i$$

- The lifetime is the reciprocal of Γ_{tot} : $\tau = \frac{1}{\Gamma_{tot}}$
- The different final states of the particle are known as the decay modes.
- The branching ratio for the *i*th decay mode is: Γ_i / Γ_{tot}

Example: Decays of the $K^{\theta}s$ meson

• Collated by the particle data group: http://pdglive.lbl.gov

K ⁰ _S	I(J ^F	$r^{2})=\frac{1}{2}(0^{-})$		
Mean life $ au = (0.8953 \pm 0.0005) imes 10^{-10}$ s				
K ⁰ _S DECAY MODES	F	Fraction (Γ _i /Γ)	Scale factor/ Confidence level	р (MeV/c)
Hadronic modes				
$\pi^0 \pi^0$		(30.69±0.05) %		209
$\pi^+\pi^-$		(69.20±0.05) %		206
$\pi^+\pi^-\pi^0$		(3.5 $^{+1.1}_{-0.9}$) $ imes$ 1	-0-7	133
Modes with photons or $\ell \overline{\ell}$ pairs				
$\pi^+\pi^-\gamma$	[<i>f</i> , <i>m</i>]	$(1.79\pm0.05) imes 1$.0 ⁻³	206
$\pi^+\pi^-e^+e^-$		$(4.79\pm0.15) \times 1$.0 ⁻⁵	206
$\pi^{0}\gamma\gamma$	[<i>m</i>]	(4.9 ± 1.8) $ imes 1$.0 ⁻⁸	231
$\gamma \gamma$		$(2.63\pm0.17) imes1$.0 ⁻⁶ S=3.0	249
Semileptonic modes				
$\pi^{\pm} e^{\mp} \nu_e$	[<i>n</i>]	$(7.04\pm0.08) \times 1$.0 ⁻⁴	229

 Which decay modes happen and which not provide information on symmetries and quantum numbers

Key Points

- Interactions in particle physics are caused by the exchange of bosons (photon, gluon, *W*, *Z*).
- Use perturbation theory to describe the interactions in terms of numbers of bosons.
 - 1 boson exchange is most probable
 - 2 boson exchange is next most probable
 - → 3 " " " " " " " " "
 → 4 …
- Use Feynman diagrams to illustrate these terms in the perturbation series
- \bullet Use Feynman rules to calculate a value for each Feynman diagram, the matrix element, $\mathcal M$
- The matrix element is used to calculate cross sections and decay widths to compare to experimental results.