Particle Physics

Dr Victoria Martin, Spring Semester 2013 Lecture 9: Quantum Chromodynamics (QCD)

★Colour charge and symmetry
★Gluons
★QCD Feynman Rules
★q q→q q scattering
★QCD potential

Symmetries in Particle Physics

- The EM, Weak and Strong forces all display a property known as Gauge Symmetry.
- In QM, a symmetry is present if **physical observables** (e.g. cross section, decay widths) are invariant under the following change in the wavefunction:

$$\psi \to \psi' = \hat{U}\psi$$

• e.g. in electromagnetism, the physical observable fields E and B are independent of the value of the EM potential, A_{μ} :

$$A_{\mu} \to A'_{\mu} = A_{\mu} - \partial_{\mu}\chi \qquad A_{\mu} = (V, \vec{A}) \text{ with } \vec{B} = \vec{\nabla} \times \vec{A}$$

• The conditions on U are that U is unitary, and commutes with the Hamiltonian:

$$\hat{U}^{\dagger}\hat{U} = \mathbf{1} \qquad \quad [\hat{U}, \hat{H}] = 0$$

• e.g. for EM, $\hat{U} = e^{i\phi}$ where ϕ is an arbitrary phase: $\psi \to \psi' = e^{i\phi}\psi$

Symmetries in QED

- Instead of a global phase transformation $e^{i\phi}$ imagine a local phase transformation, where the phase $\phi \sim q \chi$ is a function of x^{μ} : $\chi(x^{\mu})$.
 - q is a constant (will be electric charge)

$$\psi \to \psi' = U\psi = e^{iq\chi(x^{\mu})}\psi$$

ullet Substitute into Dirac Equation $(i\gamma^\mu\partial_\mu-m)\psi=0$

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi' = 0$$

$$(i\gamma^{\mu}\partial_{\mu} - m)e^{iq\chi(x)}\psi = 0$$

$$i\gamma^{\mu}(e^{iq\chi(x)}\partial_{\mu}\psi + iq\partial_{\mu}\chi\psi) - me^{iq\chi(x)}\psi = 0$$

$$(i\gamma^{\mu}\partial_{\mu} - m)e^{iq\chi(x)}\psi - q\gamma^{\mu}\partial_{\mu}\chi\psi = 0$$

- An interaction term $-q\gamma^{\mu}\partial_{\mu}\chi\psi$ term appears in the Dirac Equation.
- To cancel this, modify the Dirac Equation for **interacting** fermions:

$$[i\gamma^{\mu}\partial_{\mu} + iqA_{\mu} - m)\psi = 0$$

• With A^{μ} transforming as:

$$A_\mu o A'_\mu = A_\mu - \partial_\mu \chi$$
 to cancel interaction term

Gauge Symmetry in QED & QCD

• Demanding that QED is invariant by a local phase shift:

 $\psi \to \psi' = \hat{U}\psi = e^{iq\chi(x^{\mu})}\psi$

• Tells us that fermions interact with the photon field as:

 $q\gamma^{\mu}A_{\mu}\psi$

• This invariance of QED under the local phase shift status is know as a **local U(1) gauge symmetry**.

- Today we will see the consequences of a symmetry in QCD, but with a different symmetry, known as **SU(3)**.
 - QCD exhibits a local SU(3) gauge symmetry.

Colour Charge

- Each quark carries a colour charge: red, blue or green.
- The coupling strength is the same for all three colours colours.
- To describe a quark, use a spinor **plus** a colour column vector:

$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad g = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

 Mathematically, this is described by an SU(3) symmetry. QCD interactions are invariant under SU(3) rotations in colour space:

 Gluons responsible for exchanging momentum and colour between quarks.

- Each gluon contains colour and anticolour.
- Naively expect nine gluons: rrrbrgbrbbbggrgbgg
- However gluons are described by the generators of the SU(3) group, giving eight linear colour-anticolour combinations of these

Eight Gluons

• The Gell-Mann matrices describe the allowed colour configurations of gluons. (The Gell-Mann matrices are the *generators* of the SU(3) symmetry.)

Feynman Rules for QCD

Vertex Factors spin 1/2 quark

 $\alpha_S = \frac{g_S^2}{4\pi}$

i, j = 1,2,3 are quark colours,

 λ^a a = 1,2,..8 are the Gell-Mann SU(3) matrices

The λ^{a}_{ii} terms account for the quark colour

Gluon-Gluon Interactions

- Gluons also carry colour charge and can therefore self-interact.
- Two allowed possibilities:

• Gluon interactions are believed to give rise to colour confinement

- Try to separate an electron-positron pair $V_{\text{QED}}(r) = -\frac{q_2 q_1}{4\pi\epsilon_0 r} = -\frac{\alpha}{r}$
- Try to separate an quark anti-quark pair $V_{\rm QCD}(r) \sim \lambda r$ $\leftarrow \bullet^{\rm q} \bullet \bullet^{\rm q}$
- A gluon flux tube of interacting gluons is formed. Energy $\sim 1 \text{ GeV/fm}$.
- Gluon-gluon interactions are responsible for holding quarks in mesons and baryons.

$q\bar{q} \rightarrow q\bar{q}$ scattering

- To write down the matrix element, follow the fermion arrows backwards!
 - For the quark line $j \rightarrow i$: λ_{ji} term at vertex
 - For the antiquark line $k \rightarrow l: \lambda_{kl}$ term at vertex

$$\mathcal{M} = \left[\bar{u}_j \frac{g_S}{2} \lambda_{ji}^a \gamma^\mu u_i \right] \frac{g^{\mu\nu}}{q^2} \delta^{ab} \left[\bar{v}_k \frac{g_S}{2} \lambda_{kl}^b \gamma^\nu v_l \right]$$
$$\mathcal{M} = \frac{g_S^2}{q^2} \frac{\lambda_{ji}^a \lambda_{kl}^a}{4} \left[\bar{u}_j \gamma^\mu u_i \right] \left[\bar{v}_k \gamma^\mu v_l \right]$$

- The matrix element looks very similar to electromagnetic scattering except $e \rightarrow g_S$, and the addition of the terms $\lambda_{ji}^a \lambda_{kl}^a / 4$
- In the lowest order approximation, the dynamics of the $q\overline{q} \rightarrow q\overline{q}$ scattering is the same as electromagnetic $e^+e^- \rightarrow e^+e^-$ scattering.
- Describe in terms of Coloumb-like potential $V_{qar q} = -rac{flpha_S}{r}$
- The colour factor $f = \frac{1}{4}\lambda_{ji}^a \lambda_{kl}^a = \frac{1}{4}\sum_a \lambda_{ji}^a \lambda_{kl}^a$ is a sum over elements in the λ matrices.

Colour Factor for $q q \rightarrow q q$

• Need to calculate the **colour factor**

 $f = \frac{1}{4}\lambda^a_{ji}\lambda^a_{kl} = \frac{1}{4}\sum_a \lambda^a_{ji}\lambda^a_{kl}$

- For the calculation we choose colours for q and \overline{q} . As the theory is invariant under rotations in colour space any choice of colours will give the same answer.
- Three colour options:
 - 1. $i=1 \ k=\overline{1} \rightarrow j=1 \ l=\overline{1}$ e.g. $r \ r \rightarrow r \ r \ f_1 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{11}^a$ 2. $i=1 \ k=\overline{2} \rightarrow j=1 \ l=\overline{2}$ e.g. $r \ \overline{b} \rightarrow r \ \overline{b} \ f_2 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{22}^a$ 3. $i=1 \ k=\overline{1} \rightarrow j=2 \ l=\overline{2}$ e.g. $r \ r \rightarrow b \ \overline{b} \ f_3 = \frac{1}{4} \sum_a \lambda_{21}^a \lambda_{12}^a \ \overline{k} \ \overline{l}$
- Calculate option 2. The only matrices with non-zero element in the redred (11) and blue-blue (22) elements are λ^3 and λ^8 .

 $f_2 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{22}^a = \frac{1}{4} [\lambda_{11}^3 \lambda_{22}^3 + \lambda_{11}^8 \lambda_{22}^8] = \frac{1}{4} [(1)(-1) + (\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}})] = -\frac{1}{6}$ • Similarly,

 $f_1 = \frac{1}{4} \sum_a \lambda_{11}^a \lambda_{11}^a = \frac{1}{4} [\lambda_{11}^3 \lambda_{11}^3 + \lambda_{11}^8 \lambda_{11}^8] = \frac{1}{4} [(1)(1) + (\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}})] = \frac{1}{3}$ $f_3 = \frac{1}{4} \sum_a \lambda_{21}^a \lambda_{12}^a = \frac{1}{4} (\lambda_{21}^1 \lambda_{12}^1 + \lambda_{12}^2 \lambda_{21}^2) = \frac{1}{4} [(-i)(i) + (1)(1)] = \frac{1}{2}$

k

Colour Factor for Mesons

- Mesons are colourless $q\overline{q}$ states in a "colour singlet": $r\overline{r} + g\overline{g} + b\overline{b}$
- Calculate colour factor for $q\overline{q} \rightarrow q\overline{q}$ scattering in a meson.

• Two possibilities for colour combinations:

• Quarks stay the same colour e.g. $r r \rightarrow r r f_1 = \frac{1}{3}$

• Quarks change colour e.g. $r \overline{r} \rightarrow b \overline{b}$ and $r \overline{r} \rightarrow g \overline{g}$ each contributes $f_3 = \frac{1}{2}$

- Sum over all possible final states for $r r \to q q$ gives $f_r = \frac{1}{3} + \frac{1}{2} + \frac{1}{2} = \frac{4}{3}$
- Average over all possible initial states, rr, gg, $b\overline{b}$:

$$f = \frac{1}{3} \left(\overrightarrow{r r} \rightarrow q \overrightarrow{q} + g \overrightarrow{g} \rightarrow q \overrightarrow{q} + b \overrightarrow{b} \rightarrow q \overrightarrow{q} \right) = \frac{1}{3} \left(\frac{4}{3} + \frac{4}{3} + \frac{4}{3} \right) = \frac{4}{3}$$

- The colour factor for the $q\overline{q}$ interactions within a meson is 4/3
 - The potential within a meson (to lowest order) is: $V_{q\bar{q}} = -\frac{4}{2} \frac{\alpha_S}{2}$

QCD Potential

This model provides a good description of the bound states of heavy quarks:

- charmonium ($c \overline{c}$)
- bottomonium (b b)

 At large distances: gluon-gluon interactions $V_{\rm QCD}(r) \sim \lambda r$ • At short distances: $q\overline{q} \rightarrow q\overline{q}$ scattering $V_{q\bar{q}} = -\frac{4 \alpha_S}{4 \alpha_S}$ $V_{QCD} = -\frac{3}{3} \frac{\alpha_r}{r} + \lambda r$ initial is: • Overall potential is: $V_{\rm QCD}(r) = -\frac{4}{3}\frac{\alpha_S}{r} + \lambda r$ Y(10575) Y-decay bb ψ(4160) - 2M CC 10.5 Hadronic Y(10355) decay 4.0 (10255)(10270) (10235)ψ(3770) Mass, GeV/c² 10.0 2S (10025) X_b states η(3590)_-3686 (9915)1P (9875) (9895)3.5

