

Recent results on CP violation from DØ experiment

G.Borissov

Lancaster University, UK

	•		*	*2	
AZ U. of Arizona CA U. of California, Berkeley U. of California, Riverside Cal. State U., Freeno Lawrence Berkeley Nat. Lab	U. de Duenos Aires	LAFEX, CBPF, Rio de Janeiro State U. do Rio de Janeiro State U. Pauleta, São Paulo	U. of Alberta McGill U. Simon Fraser U. York U.	U. of Science and Technology of China, Helei	U. de los Andes, Bogol
 Pionas State U. Fermilab U. of Illinois, Chicago Northern Illinois U. Northanstern U. 			1		
N Indiana U. U. of Notive Danne Purduo U. Calamiet A Issee State U. S U. of Kanasa Kanasa State U. A Lourisana Tech U U U. of Mayfand Mi Esaton U. Narflewatern U.	Charles U., Prague Czech Tech, U., Prague Academy of Sciences, Prague	LPO, Otemost-Fernand ISN, INZP3, Grenoble CPPM, INZP3, Mansalle LAL, INZP3, Oney UP94E, INZP3, Parts OAPHIA/SP9, CEA, Sackay IRe6, Strasbourg IP46, INZP3, Vileu/Serve	U. Ben Francisco de Gudo	U. of Alachem Room U. U. of Freiburg U. of Marinz Luchting Maximilians U., Marrich U. of Wappental	Pargati U. Chandigar Delfs U. Delfs Tata trothide, Munda
II U. of Michigan	-		and the second se	and the second se	
Michigan State U. 85 U. of Mississippi E. U. of Nicetaska U. Princeton U. 17 Columbia U. U. of Rochester SUNY, Buttalo	The L		llabor	ation	_
Michigan State U. 85 U. of Neissiagos EU. of Neissiagos EU. of Neissia U. of Neissia U. of Neissia U. of Neissia SUNY, Bufalo SUNY, Bufalo SUNY, Bufalo Brookhawn Nat. Lab. M. Langelon U. U. of Osisherma	The L	00 Col (•)	llabor:	ation	
Michigan State U. B. L. of Meanishpi S. B. L. of Meanishpi S. B. L. of Netreska M. J. Marken J. M. M. Stany Brock SUNY, Burlan SUNY, Burlan SUNY, Burlan SUNY, Burlan SUNY, Burlan SUNY, Burlan SUNY, Burlan S. Langlon U. J. of Dealerum J. Southern Methodiet U. J. of Tosta Al-Inglon Pico U. A. L. af Vegnin		NO CO	CINVESTAL Mention City	ACTION FORMAGEF Andreader D. of Mathematical (Mathematical L. of Mathematical (Mathematical)	JNR, Dahne TTPP, Manner Mannerie Blafe II BEP: Produces PMPI, Sc. Personal
Michigan State U. B. Li of Meanishpin EU. J. of Neutrashia J. Yrwonton U. Yr Cohenter U. U. of Flochester SURVC, Binny Binok Brochasen Net, Lah. Di Sulliv, Simy Binok Brochasen Net, Lah. U. J. of Skahem Methodiski U. U. of Stata Arkington Pico U. A. Li of Vejesia Bit, Li of Vejesia Bit, U. of Westengton		NO CO RDC. Rores U., Brond Bungflyundkann U., Buwer	DIVESTAL Medice City	EDENNIQUEE Annuardum L of Annuardum / NODEF L of Networks / NODEF	ANB, Dates TEP, Massaw Mancas Batter U BEP: Proteins PART, St. Petersbur

CP Violation and creation of Universe

- Big Bang Nucleosynthesis (BBN) great success of modern physics;
- Combination of results from many branches of science:
 - Astrophysics;
 - Particle physics;
 - Nuclear physics;
- Based on the Standard Model;
- Predicts the abundance of light elements:
 - Abundance of different elements varies by many orders of magnitude, but still in a striking agreement with theory;

26 February 2008

Matter - antimatter asymmetry and CPV

- Excess of baryons over anti-baryons is the initial condition of BBN;
- No explanation of the evolution of anti-elements;
- One of the biggest puzzles in explaining the birth of our Universe;
- CP violation, resulting in different properties of matter and antimatter - necessary ingredient for explaining our existence;
- It provides a mechanism to generate a net baryon number through decay of heavy to light particles;

• The only source of CPV in the Standard Model - complex quark-mixing matrix (CKM matrix):

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$V_{ub} \neq V_{ub}^*; V_{td} \neq V_{td}^* \Rightarrow \text{CPV}$$

26 February 2008

CPV in Standard Model

• Condition of unitarity (V[†]V=1), and the freedom to redefine phases of quark eigenstates results in three real mixing angles and a single complex phase of the CKM matrix:

$$\begin{split} V_{\rm CKM} = & \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\ A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \end{split}$$

• This single phase is sufficient to describe all CPV phenomena observed so far;

Unitarity Triangle

• The most recent success of the Standard Model – test of one of unitarity relations ("The Unitarity Triangle"):

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• All CP-conserving and CP-violating measurements so far confirm this relation;

6

Call for New Physics

- LANCASTER
- Regardless all success of the SM in describing the CPV phenomena, the magnitude of the CPV in the SM is too small (~15 orders of magnitude) to explain the observed asymmetry between matter and antimatter;
- The mere fact of our existence demands the new sources of the CPV beyond the standard model;
- The search of these sources is one of the main goals of current and future experiments;
- A promising strategy of this search is to study the processes where the Standard Model predicts a small CPV, and extensions of the Standard Model predict large CPV effects;

This strategy is adopted in DØ experiment

DØ Detector

Key elements for B-physics:

- Muon system;
- Muon trigger;
- Solenoid + Toroid;
- Polarities of magnets are regularly reversed;
- Tracking with precise vertex detector;
- Wide acceptance up to |η|~2;

DØ Muon System

- Large acceptance $|\eta| < 2.2$;
- Excellent triggering;
- Cosmic ray rejection;
- Low punch-through;
- Local measurement of muon charge and momentum;
- High purity of muon ID;

Delivered Luminosity

These results correspond to the recorded luminosity 2.8 fb⁻¹

26 February 2008

G. Boirssov, Recent results on CP violation from Dzero experiment

11

Time dependent analysis of $B_s \rightarrow J/\psi \phi$ decay

Disclaimer: too many letters " ϕ "," ϕ " are used in a different context

 B_s system

- Contrary to any other system, *B_s* is strongly mixed;
- Two physical states B_s^H (heavy) and B_s^L (light) have distinct masses and lifetimes:

$$\Delta M_{s} = M_{H} - M_{L} \approx 2|M_{12}|$$
$$\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx 2|\Gamma_{12}|\cos\phi_{s}$$
$$\phi_{s} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
$$\overline{\Gamma}_{s} = \frac{1}{2}(\Gamma_{L} + \Gamma_{H})$$

 M_{12} and Γ_{12} are elements of complex mass matrix (*M-i* Γ /2) of B_s system;

 ϕ_s - CP violating phase;

 $\Gamma_s, \Delta \Gamma_s, \Delta M_s$ and ϕ_s are 4 parameters describing \mathbf{B}_s system

Decay $B_s \rightarrow J/\psi \phi$

- The final state is a mixture of CP-even and CP-odd state;
- The decay is described by 3 complex amplitudes: A_0 , A_{\parallel} , A_{\perp} ;
- CP-even B_s state decays through A_0 , A_{\parallel} amplitudes; CP-odd state decays through A_{\perp} ;
- The time evolution of these amplitudes is different if the B_s^L and B_s^H have different width;
- In presence of CP violation, the time evolution of amplitudes for B_s(0) and B_s(0) is different;
- We can obtain the width of B_s^{L} and B_s^{H} and the CP violating phase by studying the evolution in time of the angular distributions of $B_s \rightarrow J/\psi \phi$ decay products;

CP violating phase ϕ_s

• CP violation is predicted to be very small for $B_s \rightarrow J/\psi \phi$:

$$\phi_s^{SM} = -2\beta_s = 2 \arg\left(-\frac{V_{tb}V_{ts}^*}{V_{cb}V_{cs}^*}\right) = -0.04 \pm 0.01$$

• Contribution of the new physics can modify this prediction. In general form:

$$\boldsymbol{\phi}_{s} = \boldsymbol{\phi}_{s}^{SM} + \boldsymbol{\phi}_{s}^{\Delta}$$

• Any large non-zero value of the phase ϕ_s will be a clear and unambiguous indication of the new physics contribution;

Ingredients of analysis

15

- Exclusive selection of the decay $B_s \rightarrow J/\psi \phi$;
- Precise measurement of B_s lifetime;
- Angular distributions;
- Tagging of the initial B_s flavour;
- Likelihood fit including angular variables, B_s mass and lifetime;

$B_s \rightarrow J/\psi \phi$ Selection

• Select $J/\psi \rightarrow \mu^+\mu^-$ and $\phi \rightarrow K^+K^-$;

 Since we use the exclusive decay, the lifetime resolution is very good: σ(cτ) ≈ 25 μm;

26 February 2008

Angular distributions

18

• For an initial B_s(0) state, the angular distributions can be presented as:

$$\frac{d^4 \Gamma(B_s(t) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-))}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto \sum_k O^{(k)}(t) g^{(k)}(\theta, \psi, \varphi)$$

• For an initial $B_s(0)$ state, the angular distributions are:

$$\frac{d^4 \Gamma(\overline{B}_s(t) \to J/\psi(\to \mu^+ \mu^-)\phi(\to K^+ K^-))}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto \sum_k \overline{O}^{(k)}(t) g^{(k)}(\theta, \psi, \varphi)$$

• Angular functions $g^{(k)}(\theta, \psi, \varphi)$ are the same for $B_s(0)$ and $\overline{B}_s(0)$

$$\frac{d^{4}\Gamma(B_{s}(t) \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-})\phi(\rightarrow K^{+}K^{-})}{dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi} \propto dt \cdot d\cos\theta \cdot d\cos\psi \cdot d\varphi$$

$$2\cos^{2}\psi(1-\sin^{2}\theta\cos^{2}\varphi) \cdot |A_{0}(t)|^{2} + \sin^{2}\psi(1-\sin^{2}\theta\sin^{2}\varphi) \cdot |A_{\parallel}(t)|^{2} + \sin^{2}\psi\sin^{2}\theta \cdot |A_{\perp}(t)|^{2}$$

$$+(1/\sqrt{2})\sin2\psi\sin^{2}\theta\sin2\varphi \cdot \Re(A_{0}^{*}(t)A_{\parallel}(t)) + (1/\sqrt{2})\sin2\psi\sin2\theta\cos\varphi \cdot \Im(A_{0}^{*}(t)A_{\perp}(t))$$

$$-\sin^{2}\psi\sin2\theta\sin\varphi \cdot \Im(A_{\parallel}^{*}(t)A_{\perp}(t)).$$

• Evolution of amplitudes in time for $B_s(0)$ (upper sign) and for $\overline{B}_s(0)$ (lower sign):

$$\begin{aligned} |A_0(t)|^2 &= |A_0(0)|^2 \left[\mathcal{T}_+ \pm e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ |A_{\parallel}(t)|^2 &= |A_{\parallel}(0)|^2 \left[\mathcal{T}_+ \pm e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ |A_{\perp}(t)|^2 &= |A_{\perp}(0)|^2 \left[\mathcal{T}_- \mp e^{-\overline{\Gamma}t} \sin \phi_s \, \sin(\Delta M_s t) \right], \\ \text{where} \\ \mathcal{T}_{\pm} &= (1/2) \left[(1 \pm \cos \phi_s) e^{-\Gamma_L t} + (1 \mp \cos \phi_s) e^{-\Gamma_H t} \right]. \end{aligned}$$

• Here the CP violating phase $\phi_s = -2\beta_s + \phi_s^{\Delta}$; ϕ_s^{Δ} is the possible contribution of new physics;

Evolution of amplitudes in time (continued)

$$\begin{aligned} \Re(A_0^*(t)A_{\parallel}(t)) &= |A_0(0)||A_{\parallel}(0)|\cos(\delta_2 - \delta_1)[\mathcal{T}_+\\ &\pm e^{-\overline{\Gamma}t}\sin\phi_s\,\sin(\Delta M_s t)], \end{aligned}$$

 $\Im(A_0^*(t)A_{\perp}(t)) = |A_0(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm\sin\delta_2\cos(\Delta M_s t) \mp \cos\delta_2\sin(\Delta M_s t)\cos\phi_s) - (1/2)(e^{-\overline{\Gamma}Ht} - e^{-\overline{\Gamma}Lt})\sin\phi_s\cos\delta_2],$

$$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}(0)||A_{\perp}(0)|[e^{-\overline{\Gamma}t}(\pm\sin\delta_{1}\cos(\Delta M_{s}t) \mp \cos\delta_{1}\sin(\Delta M_{s}t)\cos\phi_{s}) - (1/2)(e^{-\overline{\Gamma}Ht} - e^{-\overline{\Gamma}Lt})\sin\phi_{s}\cos\delta_{1}],$$

- Here: $\delta_1 \equiv \arg\{A_{\parallel}^*(0)A_{\perp}(0)\}; \quad \delta_2 \equiv \arg\{A_0^*(0)A_{\perp}(0)\}$
- Normalization at t=0: $|A_0(0)|^2 + |A_{\parallel}(0)|^2 + |A_{\perp}(0)|^2 = 1$

26 February 2008

Flavor tagging of initial state

- Amplitudes are different for $B_s(0)$ and for $\overline{B}_s(0)$
- The initial state of the B_s meson is determined by the flavor tagging;
- To do this, we identify the set of properties of the B hadron opposite to the reconstructed B_s meson (opposite-side tagging), or the properties of particles accompanying the reconstructed B_s meson (same-side tagging);
- These properties should have different distribution for $B_s(0)$ and $\overline{B}_s(0)$.

Different properties for flavor tagging

- From the opposite side:
 - Charge of secondary lepton (muon or electron);
 - Jet charge of secondary vertex;
 - P_t- Weighted charge of all tracks from the opposite side;
 - From the same side:
 - charge of track closest to B_s direction;
 - Jet charge of tracks from primary vertex;
- All properties are combined into a single variable "d";

Performance of tagging

$$\boldsymbol{D} = \frac{\boldsymbol{N}_{cor} - \boldsymbol{N}_{wr}}{\boldsymbol{N}_{cor} + \boldsymbol{N}_{wr}}$$

- N_{cor} Number of correct tags;
 N_{wr} Number of wrong tags;
- Calibration of D(d) is performed using the MC events;
- Agreement between data and MC is verified using B[±] → J/ψ K[±] events, where the initial flavor is known;

Dilution versus tagging variable d in B±→J/ψ K± events for data and MC

• Equivalent tagging power of flavor tagging: $P = \varepsilon \cdot D^2 = (4.68 \pm 0.54)\%$

Likelihood fit

26

- We perform unbinned likelihood fit to the proper time, mass of (J/ψ φ), and 3 decay angles;
- There are 32 parameters in the fit describing the background, the mass and lifetime resolution:

$$L = \prod_{i=1}^{N} \left[f_{sig} \cdot F_{sig}^{i} + (1 - f_{sig}) \cdot F_{bck}^{i} \right]$$

- f_{sig} fraction of the signal in the sample;
- F_{sig} (F_{bck}) distribution of signal (background) in mass proper decay time and 3 decay angles;

Constraints of the fit

- We constraint $\Delta M_s = 17.77 \pm 0.12 \text{ ps}^{-1}$ (from CDF)
- The fit still has two-fold ambiguity:
 - $\Delta\Gamma > 0$, $\cos(\phi_s) > 0$, $\cos(\delta_1) > 0$, $\cos(\delta_2) < 0$;
 - $\Delta \Gamma < 0, \cos(\phi_s) < 0, \cos(\delta_1) < 0, \cos(\delta_2) > 0;$
- These phases were measured by Babar in a similar decay $B_d \rightarrow J/\psi K^*$ (hep-ex/0704.0522). The solution with $\delta_1 < 0, \ \delta_2 > 0$ is preferred both experimentally and theoretically;
- Following the approximate SU(2) flavor symmetry, we constraint δ_1 , δ_2 to the world average values: $\delta_1 = -0.46$; $\delta_2 = 2.92$ measured in $B_d \rightarrow J/\psi K^*$, with the Gaussian of width $\pi/5$ to allow the SU(2) symmetry breaking;

Results of the fit

Results of the fit

• Three scenarios:

- Free CP violating phase ϕ_s ;
- $φ_s$ ≡ −0.04 (SM prediction);
- $\Delta \Gamma_{\rm s} = \Delta \Gamma_{\rm s}^{\rm SM} |\cos \phi_{\rm s}|;$

	free ϕ_s	$\phi_s \equiv \phi_s^{SM}$	$\Delta \Gamma_s^{th}$
$\overline{\tau}_s$ (ps)	1.52 ± 0.06	1.53 ± 0.06	1.49 ± 0.05
$\Delta \Gamma_s \text{ (ps}^{-1})$	0.19 ± 0.07	0.14 ± 0.07	0.083 ± 0.018
$ A_{\perp}(0) $	0.41±0.04	0.44 ± 0.04	0.45 ± 0.03
$ A_0 ^2 - A_{\parallel} ^2$	0.34±0.05	0.35±0.04	0.33 ± 0.04
δ_1	-0.52 ± 0.42	-0.48 ± 0.45	-0.47 ± 0.42
δ_2	3.17±0.39	3.19±0.43	3.21 ± 0.40
ϕ_s	$-0.57^{+0.24}_{-0.30}$	≡ -0.04	-0.46 ± 0.28
$\Delta M_s \ (\mathrm{ps}^{-1})$	≡ 17.77	≡ 17.77	≡ 17.77

Contour plot

- Contours are at δ(-2 ln L) = 2.30 (CL = 0.683) and 4.61 (CL = 0.90);
- The cross has $\delta(-2 \ln L) = 1$.

Likelihood scan

31

• Likelihood scan shows a clear minimums with significance > 2.5 σ both for ϕ_s and for $\Delta\Gamma_s$:

26 February 2008

- To test the consistency of our results with the standard model we performed 2000 MC pseudo-experiments with the true value of ϕ_s set to the SM prediction (-0.04);
- With the measured value $\phi_s = -0.57$, the P-value for the SM hypothesis is 6.6%

Systematic uncertainty

Source	$ar{ au}_s$ (ps)	$\Delta \Gamma_s \text{ (ps}^{-1})$
Acceptance	±0.003	± 0.003
Signal mass model	-0.01	+0.006
Flavor purity estimate	± 0.001	± 0.001
Background model	+0.003	+0.02
ΔM_s input	± 0.01	± 0.001
Total	± 0.01	+0.02, -0.01

Source	$ A_{\perp}(0) $	$ A_0(0) ^2 - A_{ }(0) ^2$	ϕ_s
Acceptance	± 0.005	±0.03	± 0.005
Signal mass model	-0.003	-0.001	-0.006
Flavor purity estimate	± 0.001	± 0.001	± 0.01
Background model	-0.02	-0.01	+0.02
ΔM_s input	± 0.001	± 0.001	+0.06, -0.01
Total	+0.01, -0.02	±0.03	+0.07, -0.02

26 February 2008

• We obtain:

$$\phi_s = -0.57^{+0.24}_{-0.30} \text{ (stat)}^{+0.07}_{-0.02} \text{ (syst)}$$
$$\Delta \Gamma_s = 0.19 \pm 0.07 \text{ (stat)}^{+0.02}_{-0.01} \text{ (syst)} \text{ ps}^{-1}$$
$$\bar{\tau}(B_s^0) = 1.52 \pm 0.05 \pm 0.01 \text{ ps}$$

 $-1.20 < \phi_s < 0.06$, $0.06 < \Delta \Gamma_s < 0.30 \text{ ps}^{-1}$ at 90% C.L.

- The SM hypothesis for ϕ_s has P-value 6.6%;
- For the SM case $\phi_s \equiv -2\beta_s = -0.04$ we obtain:

$$\Delta \Gamma_{\rm s} = 0.14 \pm 0.07 \,(\text{stat})_{-0.01}^{+0.02} \,(\text{syst}) \,\text{ps}^{-1}$$

$$\bar{\tau}(B_{\rm s}^{0}) = 1.53 \pm 0.06 \pm 0.01 \,\text{ps}$$

Results (continued)

• For the case $\Delta \Gamma_s^{\text{th}} = \Delta \Gamma_s^{\text{SM}} |\cos \phi_s|$:

$$\phi_s = -0.46 \pm 0.28 \,(\text{stat})_{-0.02}^{+0.07} \,(\text{syst})$$

$$\bar{\tau}(B_s^0) = 1.53 \pm 0.06 \pm 0.01 \,\text{ps}$$

• Previous DØ result, which included the combination of different measurements gives:

$$\phi_s = -0.70^{+0.47}_{-0.39}$$

(with 4-fold ambiguity);

- Phys. Rev. D76, 057101 (2007)
- Recent CDF analysis of the same decay $B_s \rightarrow J/\psi \phi$ gives:

 $-1.20 < \phi_s < -0.40$ at 68% CL

- the DØ sign convention, which is opposite to CDF;
- arXiv: hep-ex/0712.2397;

26 February 2008

G. Boirssov, Recent results on CP violation from Dzero experiment

Conclusions

- Tevatron starts to deliver interesting results in the CP asymmetry measurements;
- They are complementary to the B-factories and exploit the B_s sector, not accessible there;
- We still expect to increase the statistics significantly by the end of RunII;
- CP violation measurements have an exciting future at the Tevatron;

39

BACKUP SLIDES

26 February 2008

CPV and B Mesons

- **B mesons ideal place to study CPV:**
 - Direct access to small elements of mixing matrix;
 - Can be sensitive to the new physics;
 - Neutral B mesons continuously transforming between matter and antimatter state (oscillate);
- **B** mesons with *u* and *d* quark are extensively studied at b-factories (BaBar and Belle experiments);
- **B**_s meson (bound state of *b* and *s* quarks) can currently be studied only at Tevatron;

- Standard Model predicts the following values of experimental observables for B_s system (A. Lenz, U. Nierste, hep-ph/0612167):
- Mass difference: $\Delta M_s^{SM} = (19.30 \pm 6.74) \, \mathrm{ps}^{-1}$
- Lifetime difference: $\Delta \Gamma_s^{SM} = (0.096 \pm 0.039) \, \mathrm{ps}^{-1}$
- Ratio: $\Delta \Gamma_s^{SM} / \Delta M_s^{SM} = (49.7 \pm 9.4) \times 10^{-4}$
- **CP violating phase:** $\phi_s^{SM} = (4.2 \pm 1.4) \times 10^{-3}$
- **CP** violating phase in $B_s \rightarrow J/\psi \phi$ decay: $-2\beta_s = -0.04 \pm 0.01$

Notice that the CP violating phases for Bs system is predicted to be very small in the Standard Model

- The SM prediction can be significantly modified in the presence of new physics;
- It changes the M_{12} element of mass matrix:

$$\boldsymbol{M}_{12} = \boldsymbol{M}_{12}^{SM} \cdot \boldsymbol{\Delta}_{s}; \quad \boldsymbol{\Delta}_{s} = \left| \boldsymbol{\Delta}_{s} \right| \boldsymbol{e}^{i\phi_{s}^{\Delta}}$$

• The Γ_{12} element is determined by the tree diagrams and is not modified by the new physics;

- In the presence of new physics, the experimental observables are modified as:
- Mass difference: $\Delta M_s = \Delta M_s^{SM} |\Delta_s|$
- Lifetime difference:

Ratio:

- erence: $\Delta \Gamma_s = (0.096 \pm 0.039) \,\mathrm{ps}^{-1} \cdot \cos \phi_s$ $\Delta \Gamma_s / \Delta M_s = (49.7 \pm 9.4) \times 10^{-4} \cdot \cos \phi_s / |\Delta_s|$
- **CP violating phase:** $\phi_s = \phi_s^{SM} + \phi_s^{\Delta}$
- CP violating phase in $B_s \rightarrow J/\psi \phi$ decay: $-2\beta_s + \phi_s^{\Delta}$

The CP violating phases for B_s system can be significantly modified by the contribution of the new physics, since the SM prediction is expected to be small

Experimental constraints

- $\Delta_s = 1$ Standard Model;
- Red: $\Delta M_s = 17.77 \pm 0.12 \text{ ps}^{-1}$ (CDF);
- Yellow: $\Delta \Gamma_s = 0.17 \pm 0.1 \text{ ps}^{-1} (D\emptyset);$
- Blue: $A_{SL}^{s} = (-8.8 \pm 7.3) \times 10^{-3}$ (combination of DØ results with $A_{SL}^{d} = SM$ value);
- Forward and backward solid wedges – constraint on φ_s from $\Delta\Gamma_s$ measurement;

A. Lenz, U. Nierste, hep-ph/0612167

26 February 2008

Muon Triggers

- Single inclusive muons
 - $|\eta| < 2.0, p_T > 3,4,5 \text{ GeV}$
 - Muon + track match at Level 1
 - No direct lifetime bias
 - Still could give a bias to measured lifetime if cuts on decay length are imposed offline
 - Prescaled or turned off depending on inst. lumi.
 - B physics triggers at all lumi's
 - Extra tracks at medium lumi's
 - Impact parameter requirements
 - Associated invariant mass
 - Track selections at Level 3
 - **Dimuons: other muon for flavor tagging**
 - e.g. at 50·10⁻³⁰ cm⁻²s⁻¹
 - 20 Hz of unbiased single μ
 - 1.5 Hz of IP+μ
 - 2 Hz of dimuons
- No rate problem at L1/L2

