Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter systems that are generic and largely independent of chemical details. They are especially fascinated by the way soft matter systems can harness Brownian motion to self-assemble into higher-order structures.

Exploring the generic properties of soft matter offers insights into many fundamental questions that cut across a number of disciplines. Although many of these apply to materials and industrial applications, the focus of this volume is on their applications in molecular and cell biology based on the realization that biology is soft matter come alive.

The chapters in Soft Condensed Matter Physics in Molecular and Cell Biology originated as lectures in the NATO Advanced Science Institute (ASI) and Scottish Universities Summer Schools in Physics with the same name; they represent the thinking of seventeen experts operating at the cutting edge of their respective fields. The book provides a thorough grounding in the fundamental physics of soft matter and then explores its application with regard to the three important classes of biomacromolecules: proteins, DNA, and lipids, as well as to aspects of the biology of cells. The final section of the book considers experimental techniques, covering single molecule force spectroscopy of proteins, the use of optical tweezers, along with X-ray, neutron, and light scattering from solutions.

While this work presents fundamentals that make it a suitable text for graduate students in physics, it also offers valuable insights for established soft condensed matter physicists seeking to contribute to biology, and for biologists wanting to understand what the latest thinking in soft matter physics may be able to contribute to their discipline.

Catalog no. IP658, January 2006
344 pp., ISBN: 0-7503-1023-5, $79.95 / £44.99
Contents continued...

Statistical physics of single chains;
Statistical physics of many chains; Polymer dynamics
Self-assembly and properties of lipid membranes
The constituents of lipid bilayer membranes; Self-assembly;
Bilayer membrane phases; Membrane energies;
Fluctuations; Domains, shapes and other current issues
Some aspects of membrane elasticity
Gibbs’ description; Description in terms of microscopic properties;
Equations of equilibrium and shape of interfaces
Introduction to electrostatics in soft and biological matter
The Poisson-Boltzmann theory; Poisson-Boltzmann equation: planar geometry, cylindrical coordinates, spherical coordinates — Charged colloids;
Beyond the Poisson-Boltzmann treatment
Thermal Barrier Hopping in Biological Physics
A preliminary: Diffusion on a flat landscape; First passage times: an exact result;
Landscapes and intermediate states: Higher-dimensional barrier crossing

BIOLOGICAL APPLICATIONS
Elasticity and dynamics of cytoskeletal filaments and their networks
Single-filament properties; Solutions of semi-flexible polymer; Network elasticity; Nonlinear response
Twisting and stretching DNA: Single-molecule studies
Micromanipulation techniques; Stretching DNA; DNA under torsion; DNA-protein interactions; Interactions and conformational fluctuations in DNA arrays; Electrostatic interactions; Equation of state: No thermal fluctuations; Effect of thermal fluctuations (1) Effect of thermal fluctuations (2)
Sequence-structure relationships in proteins
Energy functions for fold recognition; The evolutionary capacity of proteins
Physical and functional aspects of protein dynamics

Hydration effects and the dynamical transition; Neutron scattering from proteins; Protonation reactions in proteins; Coupling between conformational and protonation state changes in membrane proteins; Analysis of conformational changes in proteins

Models of cell motility

EXPERIMENTAL TECHNIQUES
Single-molecule force spectroscopy of proteins
Pattern recognition in force-extension traces

A practical guide to optical tweezers
Basic principles; Heating in optical tweezers; Resonant trapping; Photo bleaching in optical tweezers; Displacement detection and detection bandwidth; Signal-to-noise ratio and resolution

Solution Scattering
Static scattering; Dynamic scattering; Examples
Participants’ addresses

Please use this ORDER FORM, CALL or ORDER ONLINE at www.crcpress.com

Please indicate quantities next to the title(s) ordered below:

SOFT CONDENSED MATTER PHYSICS IN MOLECULAR AND CELL BIOLOGY
Catalog no. IP658, ISBN: 0-7503-1023-5 at $79.95 / £44.99 each.

PROTEIN GEOMETRY, CLASSIFICATION, TOPOLOGY AND SYMMETRY
Catalog no. IP653, ISBN: 0-7503-0985-7 at $79.95 / £44.99 each.

SOFT AND FRAGILE MATTER

APPLICATIONS OF NEUTRON SCATTERING TO SOFT CONDENSED MATTER
Catalog no. TP2863, ISBN: 9-0569-9300-3 at $129.95 / £74.00 each.

Ordering Information:
Orders must be prepaid or accompanied by a purchase order. Checks should be special prices for course adopted textbooks may be
All orders must be paid in U.K. £. VAT