
Heterogeneous Concurrent Modeling and Des
Plot Package

Authors: Christopher Brooks

Edward A. Lee
Contributors: Lukito Muliadi

William Wu
Jun Wu

6.1 Overview
The plot package provides classes, applets, and applications for two-dimensional graphical display

of data. It is available in a stand-alone distribution, or as part of the Ptolemy II system.
There are several ways to use the classes in the plot package:

• You can use one of several domain-polymorphic actors in a Ptolemy II model to plot data that is
provided as an input to the actor.

• You can invoke an executable, ptplot, which is a shell script, to plot data in a local file or on the
network (via a URL).

• You can invoke an executable, histogram, which is a shell script, to plot histograms of data in a
local file or on the network (via a URL)

• You can invoke an executable, pxgraph, which is a shell script, to plot data that is stored in an
ascii or binary format compatible with the older program pxgraph, which is an extension of
David Harrison’s xgraph.

• You can invoke a Java application, such as PlotMLApplication, by using the java program that is
included in your Java distribution.

• You can use an existing applet class, such as PlotMLApplet, in an HTML file. The applet parame-
ter dataurl specifies the source of plot data. You do not even have to have Ptplot installed on
your server, since you can always reference the Berkeley installation.

• You can create new classes derived from applet, frame, or application classes to customize your
ign 131

Plot Package
plots. This allows you to completely control the placement of plots on the screen, and to write Java
code that defines the data to be plotted.

The plot data can be specified in any of three data formats:

• PlotML is an XML extension for plot data. Its syntax is similar to that of HTML. XML (extensible
markup language) is an internet language that is growing rapidly in popularity.

• An older, simpler textual syntax for plot data is also provided, although in the long term, that syn-
tax is unlikely to be maintained (it will not necessarily be expanded to support new features). For
simple data plots, however, it is adequate. Using it for applets has the advantage of making it pos-
sible to reference a slightly smaller jar file containing the code, which makes for more responsive
applets. Also, the data files are somewhat smaller.

• A binary file format used by pxgraph, is supported by classes in the compat package. Formatting
information in pxgraph (and in the compat package) is provided by command-line arguments,
rather than being included with the binary plot data, exactly as in the older program. Applets spec-
ify these command-line arguments as an applet parameter (pxgraphargs).

6.2 Using Plots
If $PTII represents the home directory of your Ptplot installation (or your Ptolemy II installation),

then, $PTII/bin is a directory that contains a number of executables. Three of these invoke plot applica-
tions, ptplot, histogram, and pxgraph. We recommend putting this directory into your path so
that these executables can be found automatically from the command line. Invoking the command

ptplot

with no arguments should open a window that looks like that in figure 6.1. You can also specify a file
to plot as a command-line argument. To find out about command-line options, type

ptplot -help

The ptplot command is a shell script that invokes the following equivalent command:

java -classpath $PTII ptolemy.plot.plotml.EditablePlotMLApplication

Since it is a shell script, it will work on Unix machines and Windows machines that have Cygwin1

installed. In the same directory are three Windows versions that do not require Cygwin, ptplot.bat,
histogram.bat, and pxgraph.bat, which you can invoke by typing into the DOS command
prompt, for example,

ptplot.bat

1. The Cygwin Toolkit is a freely available package available from
http://cygwin.com. A Ptolemy II specific subset of Cygwin can be found at
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/cygwin.htm
132 Ptolemy II

Plot Package
These scripts make three assumptions.
• First, java is in your path. Type “java -version” to verify that the java program is in your

path and is working properly. Note that Ptplot 3.x and later require Java 1.3 or later, Java 1.4 is pre-
ferred.

• Second, the environment variable PTII is set to point to the home directory of the plot (or Ptolemy
II) installation. Type “echo %PTII%” in a Windows DOS shell and “echo $PTII” in Unix or
Windows Cygwin bash shell to check this.

• The directory $PTII/bin is in your path. Under Windows without Cygwin, type “echo %PATH%”.
Type “type ptplot” in Windows with Cygwin and “which ptplot” in Unix to check this.

In Windows, environment variables and your path are set in the System control panel. You can now
explore a number of features of ptplot.

6.2.1 Zooming and filling
To zoom in, drag the left mouse button down and to the right to draw a box around an area that you

want to see in detail, as shown in figure 6.2. To zoom out, drag the left mouse button up and to the
right. To just fill the drawing area with the available data, type Control-F, or invoke the fill command
from the Special menu. In applets, since there is no menu, the fill command is (optionally) made avail-
able as a button at the upper right of the plot.

6.2.2 Printing and exporting
The File menu includes a Print and Export command. The Print command works as you expect.

The export command produces an encapsulated PostScript file (EPS) suitable for inclusion in word
processors. The image in figure 6.3 is such an EPS file imported into FrameMaker.

At this time, the EPS file does not include preview data. This can make it somewhat awkward to

FIGURE 6.1. Result of invoking ptplot on the command line with no arguments.
Heterogeneous Concurrent Modeling and Design 133

Plot Package
work with in a word processor, since it will not be displayed by the word processor while editing (it
will, however, print correctly). It is easy to add the preview data using the freely available program
Ghostview1. Just open the file using Ghostview and, under the edit menu, select “Add EPS Preview.”

Export facilities are also available from a small set of key bindings, which permits them to be

1. Ghostview is available http://www.cs.wisc.edu/~ghost

FIGURE 6.2. To zoom in, drag the left mouse button down and to the right to draw a box around the region
you wish to see in more detail.
134 Ptolemy II

Plot Package
invoked from applets (which have no menu bar) and from the standalone scripts:

• Control-c: Copy plot to clipboard (EPS format), if permitted.
• D: Dump the plot to standard output in PlotML format.
• E: Export the plot to standard output in EPS format.
• F: Fill the plot.
• H or ?: Display a simple help message.
• Control-d or q: Quit
The encapsulated PostScript (EPS) that is produced is tuned for black-and-white printers. In the future,
more formats may supported. Note that with JDK 1.3.0 under Windows 2000, Java's interface the clip-
board may not work, so Control-C might not accomplish anything. Note further that with applets, you
may find it best to click near the title rather than clicking inside the graph itself and then type the com-
mand.

 Exporting to the clipboard and to standard output, in theory, is allowed for applets, unlike writing
to a file. Thus, these key bindings provide a simple mechanism to obtain a high-resolution image of the
plot from an applet, suitable for incorporation in a document. However, in some browsers, exporting to
standard out triggers a security violation. You can use Sun's appletviewer instead.

6.2.3 Editing the data
You can modify the data that is plotted by first selecting a data set to modify using the Edit dataset

command in the Edit menu, selecting a dataset and then dragging the right mouse button. Figure 6.4
shows the result of modifying one of the datasets (the one in red on a color display). The modification
is carried out by freehand drawing, although considerable precision is possible by zooming in. Use the
Save or SaveAs command in the File menu to save the modified plot (in PlotML format).

2
x10

-PI

-PI/2

0

PI/2

PI

-0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sample plot

time

v
a
l
u
e

FIGURE 6.3. Encapsulated postscript generated by the Export command in the File menu of ptplot can be
imported into word processors. This figure was imported into FrameMaker.
Heterogeneous Concurrent Modeling and Design 135

Plot Package
6.2.4 Modifying the format
You can control how data is displayed by invoking the Format command in the Edit menu. This

brings up a dialog like that at bottom in figure 6.5. At the top is the dialog and the plot before changes
are made, and at the bottom is after changes are made. In particular, the grid has been removed, the
stems have been removed, the lines connecting the data points have been removed, the data points
have been rendered with points, and the color has been removed. Use the Save or SaveAs command in
the File menu to save the modified plot (in PlotML format). More sophisticated control over the plot
can be had by editing the PlotML file (which is a text file). The PlotML syntax is described below.

The entries in the format dialog are all straightforward to use except the “X Ticks” and “Y Ticks”
entries. These are used to specify how the axes are labeled. The tick marks for the axes are usually
computed automatically from the ranges of the data. Every attempt is made to choose reasonable posi-
tions for the tick marks regardless of the data ranges (powers of ten multiplied by 1, 2, or 5 are used).
To change what tick marks are included and how they are labeled, enter into the “X Ticks” or “Y
Ticks” entry boxes a string of the following form:

label position, label position, ...

A label is a string that must be surrounded by quotation marks if it contains any spaces. A position is a
number giving the location of the tick mark along the axis. For example, a horizontal axis for a fre-
quency domain plot might have tick marks as follows:

FIGURE 6.4. You can modify the data being plotted by selecting a data set and then dragging the right mouse
button. Use the Edit menu to select a data set. Use the Save command in the File menu to save the modified
plot (in PlotML format).
136 Ptolemy II

Plot Package
XTicks: -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

6.3 Class Structure
The plot package has two subpackages, plotml and compat. The core package, plot, contains tool-

kit classes, which are used in Java programs as building blocks. The two subpackages contain classes
that are usable by an end-user (vs. a programmer).

FIGURE 6.5. You can control
how data is displayed using the Format command in the Edit menu, which brings up the dialog shown at the
right. On the top is before changes are made, and on the bottom is after.
Heterogeneous Concurrent Modeling and Design 137

Plot Package
6.3.1 Toolkit classes
The class diagram for the core of the plot package is shown in figure 6.6. These classes provide a

toolkit for constructing plotting applications and applets. The base class is PlotBox, which renders the
axes and the title. It extends Panel, a basic container class in Java. Consequently, plots can be incorpo-
rated into virtually any Java-based user interface.

The Plot class extends PlotBox with data sets, which are collections of instances of PlotPoint. The
EditablePlot class extends this further by adding the ability to modify data sets.

Live (animated) data plots are supported by the PlotLive class. This class is abstract; a derived
class must be created to generate the data to plot (or collect it from some other application).

The Histogram class extends PlotBox rather than Plot because many of the facilities of Plot are
irrelevant. This class computes and displays a histogram from a data file. The same data file can be
read by this class and the other plot classes, so you can plot both the histogram and the raw data that is
used to generate it from the same file.

6.3.2 Applets and applications
A number of classes are provided to use the plot toolkit classes in common ways, but you should

keep in mind that these classes are by no means comprehensive. Many interesting uses of the plot
package involve writing Java code to create customized user interfaces that include one or more plots.
The most commonly used built-in classes are those in the plotml package, which can read PlotML
files, as well as the older textual syntax.

Ptplot 5.5, which shipped with Ptolemy II 5.0 requires Swing. The easiest way to get Swing is to
install the Java 1.4 (or later) Plug-in, which is part of the JRE and JDK 1.4 installation. Unfortunately,
using the Java Plug-in makes the applet HTML more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to properly select
one of three different ways to invoke the Java Plug-in. This method works on the most different
types of platforms and browsers. The JavaScript is so complex, that rather than reproduce it here,
please see one of the demonstration html files.

2. Use the much simpler <applet> ...</applet> tag to invoke the Java Plug-in. This method works on
many platforms and browsers, but requires a more recent version of the Java Plug-in, and will not
work under Netscape Communicator 4.7x.
For details about the above two choices, see http://java.sun.com/products/plugin/versions.html.
We document the much simpler <applet> . . . </applet> tag format below
The following segment of HTML is an example:

<APPLET
 code = "ptolemy.plot.plotml.PlotMLApplet"
 codebase = "../../.."
 archive = "ptolemy/plot/plotmlapplet.jar"
 width = "600"
 height = "400"
 >
<PARAM NAME = "background" VALUE = "#faf0e6" >
<PARAM NAME = "dataurl" VALUE = "plotmlSample.txt" >
 No Java Plug-in support for applet, see
 <code>http://java.sun.com/products/plugin/</code>
</APPLET>

To use this yourself you will probably need to change the codebase and dataurl entries. The first points
138 Ptolemy II

Plot Package
FIGURE 6.6. The core classes of the plot package.

Histogram

+addPoint(dataset : int, value : double)
+addPoint(dataset : int, x : double, y : double, connected : boolean)
+setBars(width : double, offset : double)
+setBinOffset(offset : double)
+setBinWidth(width : double)
#_checkDatasetIndex(index : int)
#_drawBar(g : Graphics, dataset : int, xpos : long, ypos : long, clip : boolean)

-... : various

PlotPoint

+PlotPoint()

+x : double
+y : double
+yLowEB : double
+yHighEB : double
+connected : boolean
+errorBar : boolean
+originalX : double

Panel

PlotBox

+PlotBox()
+addLegend(dataset : int, legend : String)
+addXTick(label : String, position : double)
+addYTick(label : String, position : double)
+clear(axes : boolean)
+clearLegends()
+deferIfNecessary(action : Runnable)
+export(out : OutputStream)
+exportImage() : BufferedImage
+exportImage(rectangle : Rectangle) : BufferedImage
+exportImage(img : BufferedImage, r : Rectangle, hints : RenderingHints, transp : boolean) : BufferedImage
+exportImage(img : BufferedImage) : BufferedImage
+fillPlot()
+getColor() : boolean
+getColorByName(name : String) : Color
+getGrid() : boolean
+getLegend(dataset : int) : String
+getMaximumSize() : Dimension
+getMinimumSize() : Dimension
+getPreferredSize() : Dimension
+getTitle() : String
+getXLabel() : String
+getXLog() : boolean
+getXRange() : double[]
+getXTicks() : Vector[]
+getYLabel() : String
+getYLog() : boolean
+getYRange() : double[]
+getYTicks() : Vector[]
+print(g : Graphics, format : PageFormat, index : int)
+read(in : InputStream)
+read(line : String)
+resetAxes()
+removeLegend(dataset : int)
+samplePlot()
+setBackground(color : Color)
+setBounds(x : int, y : int, width : int, height : int)
+setButtons(visible : boolean)
+setForeground(color : Color)
+setGrid(grid : boolean)
+setLabelFont(fontname : String)
+setSize(width : int, height : int)
+setTitle(title : String)
+setTitleFont(fontname : String)
+setWrap(wrap : boolean)
+setXLabel(label : String)
+setXLog(log : boolean)
+setXRange(min : double, max : double)
+setYLabel(label : String)
+setYLog(log : boolean)
+setYRange(min : double, max : double)
+write(out : OutputStream)
+write(out : OutputStream, dtd : String)
+write(out : Writer, dtd : String)
+writeData(output : PrintWriter)
+writeFormat(out : Writer)
+zoom(lowx : double, lowy : double, highx : double, highy : double)
#_drawPlot(g : Graphics, clearfirst : boolean)
#_drawPoint(g : Graphics, set : int, x : long, y : long, clip : boolean)
#_drawPlot(g : Graphics, clear : boolean, drawRect : Rectangle)
#_help()
#_parseLine(line : String)
#_setPadding(padding : double)
 _zoom(x : int, y : int)
 _zoomBox(x : int, y : int)
 _zoomStart(x : int, y : int)

-... : various

PlotLive

+addPoints()
+pause()
+setButtons(visible : boolean)
+start()
+stop()

-_plotLiveThread : Thread
-... : various

Runnable

+run()

EditablePlot

+EditablePlot()
+addEditListener(listener : EditListener)
+getData(dataset : int) : double[][]
+redo()
+removeEditListener(listener : EditListener)
+setEditable(dataset : int)
+undo()

-_redoStack : Stack
-_undoStack : Stack
-_editListeners : Vector

EditListener

+editDataModified(source : EditablePlot, dataset : int)

Plot

+Plot()
+addPoint(dataset : int, x : double, y : double, connected : boolean)
+addPointWithErrorBars(ds : int, x : double, y : double, yLow : double, yHigh : double, cnct : boolean)
+clear(dataset : int)
+erasePoint(dataset : int, index : int)
+getConnected() : boolean
+getImpulses() : boolean
+getMarksStyle() : String
+getNumDataSets() : int
+setBars(on : boolean)
+setBars(width : double, offset : double)
+setConnected(on : boolean)
+setConnected(on : boolean, dataset : int)
+setImpulses(on : boolean)
+setImpulses(on : boolean, dataset : int)
+setMarksStyle(style : String)
+setMarksStyle(style : String, dataset : int)
+setPointsPersistence(numPoints : int)
+setReuseDatasets(on : boolean)
+setXPersistence(persistence : double)
#_checkDatasetIndex(dataset : int)
#_drawBar(g : Graphics, dataset : int, x : long, y : long, clip : boolean)
#_drawErrorBar(g : Graphics, dataset : int, x : long, ylow : long, yhigh : long, clip : boolean)
#_drawImpulse(g : Graphics, dataset : int, x : long, y : long, clip : boolean)
#_drawLine(g : Graphics, dataset : int, startx : long, starty : long, endx : long, endy : long, clip : boolean)
#_drawPlot(g : Graphics, clearfirst : boolean)
#_drawPoint(g : Graphics, dataset : int, x : long, y : long, clip : boolean)
#_parseLine(line : String) : boolean
#_write(output : PrintWriter)

-... : various
Heterogeneous Concurrent Modeling and Design 139

Plot Package
to the root directory of the plot installation (usually, the value of the PTII environment variable). The
second points to a file containing data to be plotted, plus optional formatting information. The file for-
mat for the data is described in the next section. The applet is created by instantiating the PlotMLAp-
plet class.

The archive entry contains the name of the jar file that contains all the classes necessary to run a
PlotML applet. The advantage of specifying a jar file is that remote users are likely to experience a
faster download because all the classes come over at once, rather than the browser asking for each
class from the server. A downside of using jar files in applets is that if you are modifying the source of
Ptplot itself, then you must also update the jar file, or your changes will not appear. A common
workaround is to remove the archive entry during testing, or remove the jar files themselves.

You can also easily create your own applet classes that include one or more plots. As shown in fig-
ure 6.6, the PlotBox class is derived from JPanel, a basic class of the Java Foundation Classes (JFC)
toolkit, also known as Swing. It is easy to place a panel in an applet, positioned however you like, and
to combine multiple panels into an applet. PlotApplet is a simple class that adds an instance of Plot.

Creating an application that includes one or more plots is also easy. The PlotApplication class,
shown in figure 6.7, creates a single top-level window (a JFrame), and places within it an instance of
Plot. This class is derived from the PlotFrame class, which provides a menu that contains a set of com-
mands, including opening files, saving the plotted data to a file, printing, etc.

The difference between PlotFrame and PlotApplication is that PlotApplication includes a main()
method, and is designed to be invoked from the command line. You can invoke it using commands like
the following:

java -classpath $PTII ptolemy.plot.PlotApplication args

However, the classes shown in figure 6.7, which are in the plot package, are not usually the ones that
an end user will use. Instead, use the ones in figure 6.8. These extend the base classes to support the
PlotML language, described below. The only motivation for using the base classes in figure 6.7 is to
have a slightly smaller jar file to load for applets.

The classes that end users are likely to use, shown in figure 6.8, include:

• PlotMLApplet: An applet that can read PlotML files off the web and render them.
• EditablePlotMLApplet: A version that allows editing of any data set in the plot.
• HistogramMLApplet: A version that uses the Histogram class to compute and plot histograms.
• PlotMLFrame: A top-level window containing a plot defined by a PlotML file.
• PlotMLApplication: An application that can be invoked from the command line and reads PlotML

files.
• EditablePlotMLApplication: An extension that allows editing of any data set in the plot.
• HistogramMLApplication: A version that uses the Histogram class to compute and plot histo-

grams.

EditablePlotMLApplication is the class invoked by the ptplot command-line script. It can open plot
files, edit them, print them, and save them.
140 Ptolemy II

Plot Package
6.3.3 Writing applets
A plot can be easily embedded within an applet, although there are some subtleties. The simplest

mechanism looks like this:

public class MyApplet extends JApplet {
public void init() {

super.init();
Plot myplot = new Plot();
getContentPane().add(myplot);

FIGURE 6.7. Core classes supporting applets and applications. Most of the time, you will use the classes in
the plotml package, which extend these with the ability to read PlotML files.

Frame

Applet

+init()

PlotApplet

+PlotApplet()
+newPlot() : PlotBox
+plot() : Plot
#_read(input : InputStream)
#_setPlotSize(appletWidth : int, appletHeight : int)

-_plot : Plot

PlotFrame

+PlotFrame()
+PlotFrame(title : String)
+PlotFrame(title : String, plot : PlotBox)
+samplePlot()
#_about()
#_close()
#_editFormat()
#_export()
#_help()
#_open()
#_print()
#_read(input : InputStream, base : URL)
#_save()
#_saveAs()

+plot : Plot

PlotApplication

+PlotApplication()
+PlotApplication(title : String)
+PlotApplication(plot : PlotBox, args : String[])
+main(args : String)
#_parseArgs() : int
#_usage() : String

PlotLiveApplet

+PlotLiveApplet()

PlotBox

Plot

EditablePlot

Histogram

PlotLive
Heterogeneous Concurrent Modeling and Design 141

Plot Package
FIGURE 6.8. UML static structure diagram for the plotml package, a subpackage of plot providing classes

plot package

com.microstar.xml package

HandlerBase

+attribute(name : String, value : String, specified : boolean)
+charData(chars : char[], offset : int, length : int)
+endDocument()
+endElement(elementName : String)
+error(message : String, sysid : String, line : int, column : int)
+resolveEntity(systemId : String, publicId : String) : Object
+startDocument()
+startElement(elementName : String)
+startExternalEntity(systemId : String)

PlotBox

XmlParser

+parse(systemId : String, publicId : String, stream : InputStream, encoding : String)
+setHandler(handler : XmlHandler)

configures

handler
PlotBoxMLParser

+PlotBoxMLParser()
+PlotBoxMLParser(plot : PlotBox)
+parse(base : URL, input : InputStream)
+parse(base : URL, reader : Reader)
+parse(base : URL, text : String)
#_checkForNull(object : Object, message : String)
#_currentExternalEntity() : String

+PlotML_DTD_1 : String
#_attributes : Hashtable
#_currentCharData : StringBuffer
#_parser : XmlParser
#_plot : PlotBox

PlotMLParser

+PlotMLParser()
+PlotMLParser(plot : Plot)
#_addPoint(connected : boolean, elementName : String)

#_connected : boolean
#_currentDataset : int
#_currentPointCount : double

Plot

configures

XmlException

+XmlException(message : String, systemId : String, line : int, column : int)
+getMessage() : String
+getSystemId() : String
+getLine() : int
+getColumn()

throws

PlotApplet

+_read(input : InputStream)

PlotMLApplet

+PlotMLApplet()
#_newParser() : PlotMLParser

PlotApplication

+main(args : String[])
#_about()
#_read(base : URL, input : InputStream)

PlotMLApplication

+PlotMLApplication()
+PlotMLApplication(args : String[])
+PlotMLApplication(plot : PlotBox, args : String[])
#_newParser() : PlotBoxMLParser

EditablePlotMLApplet

+EditablePlotMLApplet()

EditablePlotMLApplication

+EditablePlotMLApplication()
+EditablePlotMLApplication(args : String[])
+EditablePlotMLApplication(plot : EditablePlot, args : String[])

HistgramMLParser

+HistogramMLParser(plot : Histogram)

HistogramMLApplet

+HistogramMLApplet()

HistogramMLApplication

+HistogramMLApplication()
+HistogramMLApplication(args : String[])
+HistogramMLApplication(plot : Histogram, args : String[])
142 Ptolemy II

Plot Package
myplot.setTitle("Title of plot");
...

}
}

This places the plot in the center of the applet space, stretching it to fill the space available. To control
the size independently of that of the applet, for some mysterious reason that only Sun can answer, it is
necessary to embed the plot in a panel, as follows:

public class MyApplet extends JApplet {
public void init() {

super.init();
Plot myplot = new Plot();
JPanel panel = new JPanel();
getContentPane().add(panel);
panel.add(myplot);
myplot.setSize(500, 300);
myplot.setTitle("Title of plot");
...

}
}

The setSize() method specifies the width and height in pixels. You will probably want to control the
background color and/or the border, using statements like:

myplot.setBackground(background color);
myplot.setBorder(new BevelBorder(BevelBorder.RAISED));

Alternatively, you may want to make the plot transparent, which results in the background showing
through:

myplot.setOpaque(false);

6.4 PlotML File Format
Plots can be specified as textual data in a language called PlotML, which is an XML extension.

XML, the popular extensible markup language, provides a standard syntax and a standard way of
defining the content within that syntax. The syntax is a subset of SGML, and is similar to HTML. It is
intended for use on the internet. Plot classes can save data in this format (in fact, the Save operation
always saves data in this format), and the classes in the plotml subpackage, shown in figure 6.8, can
read data in this format. The key classes supporting this syntax are PlotBoxMLParser, which parses a
subset of PlotML supported by the PlotBox class, PlotMLParser, which parses the subset of PlotML
supported by the Plot class, and HistogramMLParser, which parses the subset that supports histo-
grams.
Heterogeneous Concurrent Modeling and Design 143

Plot Package
6.4.1 Data organization
Plot data in PlotML has two parts, one containing the plot data, including format information (how

the plot looks), and the other defining the PlotML language. The latter part is called the document type
definition, or DTD. This dual specification of content and structure is a key XML innovation.

Every PlotML file must either contain or refer to a DTD. The simplest way to do this is with the
following file structure:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD PlotML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/PlotML_1.dtd">
<plot>

format commands...
datasets...

</plot>

Here, “format commands” is a set of XML elements that specify what the plot looks like, and
“datasets” is a set of XML elements giving the data to plot. The syntax for these elements is described
below in subsequent sections. The first line above is a required part of any XML file. It asserts the ver-
sion of XML that this file is based on (1.0) and states that the file includes external references (in this
case, to the DTD). The second and third lines declare the document type (plot) and provide references
to the DTD.

The references to the DTD above refer to a “public” DTD. The name of the DTD is

-//UC Berkeley//DTD PlotML 1//EN

which follows the standard naming convention of public DTDs. The leading dash “-” indicates that
this is not a DTD approved by any standards body. The first field, surrounded by double slashes, in the
name of the “owner” of the DTD, “UC Berkeley.” The next field is the name of the DTD, “DTD
PlotML 1” where the “1” indicates version 1 of the PlotML DTD. The final field, “EN” indicates that
the language assumed by the DTD is English.

In addition to the name of the DTD, the DOCTYPE element includes a URL pointing to a copy of
the DTD on the web. If a particular PlotML tool does not have access to a local copy of the DTD, then
it finds it at this web site. PtPlot recognizes the public DTD, and uses its own local version of the DTD,
so it does not need to visit this website in order to open a PlotML file.

An alternative way to specify the DTD is:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE plot SYSTEM "DTD location">
<plot>

format commands...
datasets...

</plot>

Here, the DTD location is a relative or absolute URL.
A third alternative is to create a standalone PlotML file that includes the DTD. The result is rather

verbose, but has the general structure shown below:
144 Ptolemy II

Plot Package
<?xml version="1.0" standalone="yes"?>
<!DOCTYPE plot [

DTD information
]>
<plot>

format commands
datasets

</plot>

These latter two methods are useful if you extend the DTD.
The DTD for PlotML is shown in figure 6.9. This defines the PlotML language. However, the

DTD is not particularly easy to read, so we define the language below in a more tutorial fashion.

6.4.2 Configuring the axes
The elements described in this subsection are understood by the base class PlotBoxMLParser.

<title>Your Text Here</title>

The title is bracketed by the start element <title> and end element </title>. In XML, end ele-
ments are always the same as the start element, except for the slash. The DTD for this is simple:

<!ELEMENT title (#PCDATA)>

This declares that the body consists of PCDATA, parsed character data.
Labels for the X and Y axes are similar,

<xLabel>Your Text Here</xLabel>
<yLabel>Your Text Here</yLabel>

Unlike HTML, in XML, case is important. So the element is xLabel not XLabel.

The ranges of the X and Y axes can be optionally given by:

<xRange min="min" max="max"/>
<yRange min="min" max="max"/>

The arguments min and max are numbers, possibly including a sign and a decimal point. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes. The DTD for these looks like:

<!ELEMENT xRange EMPTY>
 <!ATTLIST xRange min CDATA #REQUIRED

 max CDATA #REQUIRED>

The EMPTY means that the element does not have a separate start and end part, but rather has a final
slash before the closing character “/>”. The two ATTLIST elements declare that min and max
Heterogeneous Concurrent Modeling and Design 145

Plot Package
<!ELEMENT plot (barGraph | bin | dataset | default | noColor | noGrid | size | title | wrap | xLabel |
xLog | xRange | xTicks | yLabel | yLog | yRange | yTicks)*>

 <!ELEMENT barGraph EMPTY>
 <!ATTLIST barGraph width CDATA #IMPLIED
 offset CDATA #IMPLIED>
 <!ELEMENT bin EMPTY>
 <!ATTLIST bin width CDATA #IMPLIED
 offset CDATA #IMPLIED>
 <!ELEMENT dataset (m | move | p | point)*>
 <!ATTLIST dataset connected (yes | no) #IMPLIED
 marks (none | dots | points | various | pixels) #IMPLIED
 name CDATA #IMPLIED
 stems (yes | no) #IMPLIED>
 <!ELEMENT default EMPTY>
 <!ATTLIST default connected (yes | no) "yes"
 marks (none | dots | points | various | pixels) "none"
 stems (yes | no) "no">
 <!ELEMENT noColor EMPTY>
 <!ELEMENT noGrid EMPTY>
 <!ELEMENT reuseDatasets EMPTY>
 <!ELEMENT size EMPTY>
 <!ATTLIST size height CDATA #REQUIRED
 width CDATA #REQUIRED>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT wrap EMPTY>
 <!ELEMENT xLabel (#PCDATA)>
 <!ELEMENT xLog EMPTY>
 <!ELEMENT xRange EMPTY>
 <!ATTLIST xRange min CDATA #REQUIRED
 max CDATA #REQUIRED>
 <!ELEMENT xTicks (tick)+>
 <!ELEMENT yLabel (#PCDATA)>
 <!ELEMENT yLog EMPTY>
 <!ELEMENT yRange EMPTY>
 <!ATTLIST yRange min CDATA #REQUIRED
 max CDATA #REQUIRED>
 <!ELEMENT yTicks (tick)+>
 <!ELEMENT tick EMPTY>
 <!ATTLIST tick label CDATA #REQUIRED
 position CDATA #REQUIRED>
 <!ELEMENT m EMPTY>
 <!ATTLIST m x CDATA #IMPLIED
 y CDATA #REQUIRED
 lowErrorBar CDATA #IMPLIED
 highErrorBar CDATA #IMPLIED>
 <!ELEMENT move EMPTY>
 <!ATTLIST move x CDATA #IMPLIED
 y CDATA #REQUIRED
 lowErrorBar CDATA #IMPLIED
 highErrorBar CDATA #IMPLIED>
 <!ELEMENT p EMPTY>
 <!ATTLIST p x CDATA #IMPLIED
 y CDATA #REQUIRED
 lowErrorBar CDATA #IMPLIED
 highErrorBar CDATA #IMPLIED>
 <!ELEMENT point EMPTY>
 <!ATTLIST point x CDATA #IMPLIED
 y CDATA #REQUIRED
 lowErrorBar CDATA #IMPLIED
 highErrorBar CDATA #IMPLIED>

FIGURE 6.9. The document type definition (DTD) for the PlotML language.
146 Ptolemy II

Plot Package
attributes are required, and that they consist of character data.

The tick marks for the axes are usually computed automatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1, 2, or 5 are used). However, they can also be specified explicitly using elements like:

<xTicks>
<tick label="label" position="position"/>
<tick label="label" position="position"/>
...

</xTicks>

A label is a string that replaces the number labels on the axes. A position is a number giving the loca-
tion of the tick mark along the axis. For example, a horizontal axis for a frequency domain plot might
have tick marks as follows:

<xTicks>
<tick label="-PI" position="-3.14159"/>
<tick label="-PI/2" position="-1.570795"/>
<tick label="0" position="0"/>
<tick label="PI/2" position="1.570795"/>
<tick label="PI" position="3.14159"/>

</xTicks>

Tick marks could also denote years, months, days of the week, etc. The relevant DTD information is:

<!ELEMENT xTicks (tick)+>
 <!ELEMENT tick EMPTY>
 <!ATTLIST tick label CDATA #REQUIRED

position CDATA #REQUIRED>

The notation (tick)+ indicates that the xTicks element contains one or more tick elements.

If ticks are not specified, then the X and Y axes can use a logarithmic scale with the following ele-
ments:

<xLog/>
<yLog/>

The tick labels, which are computed automatically, represent powers of 10. The log axis facility has a
number of limitations, which are documented in “Limitations” on page 6-154.

By default, tick marks are connected by a light grey background grid. This grid can be turned off
with the following element:

<noGrid/>

Also, by default, the first ten data sets are shown each in a unique color. The use of color can be turned
off with the element:
Heterogeneous Concurrent Modeling and Design 147

Plot Package
<noColor/>

Finally, the rather specialized element

<wrap/>

enables wrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value of points is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea-
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
in X.

You can also specify the size of the plot, in pixels, as in the following example:

<size width="400" height="300">

All of the above commands can also be invoked directly by calling the corresponding public meth-
ods from Java code.

6.4.3 Configuring data
Each data set has the form of the following example

<dataset name="grades" marks="dots" connected="no" stems="no">
data

</dataset>

All of the arguments to the dataset element are optional. The name, if given, will appear in a legend
at the upper right of the plot. The marks option can take one of the following values:
• none: (the default) No mark is drawn for each data point.
• points: A small point identifies each data point.
• dots: A larger circle identifies each data point.
• various: Each dataset is drawn with a unique identifying mark. There are 10 such marks, so they

will be recycled after the first 10 data sets.
• pixels: A single pixel identified each data point.
The connected argument can take on the values “yes” and “no.” It determines whether successive
datapoints are connected by a line. The default is that they are. Finally, the stems argument, which can
also take on the values “yes” and “no,” specifies whether stems should be drawn. Stems are lines
drawn from a plotted point down to the x axis. Plots with stems are often called “stem plots.”

The DTD is:

<!ELEMENT dataset (m | move | p | point)*>
 <!ATTLIST dataset connected (yes | no) #IMPLIED

marks (none | dots | points | various | pixels) #IMPLIED
148 Ptolemy II

Plot Package
name CDATA #IMPLIED
stems (yes | no) #IMPLIED>

The default values of these arguments can be changed by preceding the dataset elements with a
default element, as in the following example:

<default connected="no" marks="dots" stems="yes"/>

The DTD for this element is:

<!ELEMENT default EMPTY>
<!ATTLIST default connected (yes | no) "yes"

marks (none | dots | points | various | pixels) "none"
stems (yes | no) "no">

If the following element occurs:

<reuseDatasets/>

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is turned off, so datasets with the
same name are not merged.

6.4.4 Specifying data
A dataset has the form

<dataset options>
data

</dataset>

The data itself are given by a sequence of elements with one of the following forms:

<point y="yValue">
<point x="xValue" y="yValue">
<point y="yValue" lowErrorBar="low" highErrorBar="high">
<point x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

To reduce file size somewhat, they can also be given as

<p y="yValue">
<p x="xValue" y="yValue">
<p y="yValue" lowErrorBar="low" highErrorBar="high">
<p x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

The first form specifies only a Y value. The X value is implied (it is the count of points seen before in
this data set). The second form gives both the X and Y values. The third and fourth forms give low and
high error bar positions (error bars are use to indicate a range of values with one data point). Points
Heterogeneous Concurrent Modeling and Design 149

Plot Package
given using the syntax above will be connected by lines if the connected option has been given value
“yes” (or if nothing has been said about it).

Data points may also be specified using one of the following forms:

<move y="yValue">
<move x="xValue" y="yValue">
<move y="yValue" lowErrorBar="low" highErrorBar="high">
<move x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

<m y="yValue">
<m x="xValue" y="yValue">
<m y="yValue" lowErrorBar="low" highErrorBar="high">
<m x="xValue" y="yValue" lowErrorBar="low" highErrorBar="high">

This causes a break in connected points, if lines are being drawn between points. I.e., it overrides the
connected option for the particular data point being specified, and prevents that point from being
connected to the previous point.

6.4.5 Bar graphs
To create a bar graph, use:

<barGraph width="barWidth" offset="barOffset"/>

You will also probably want the connected option to have value “no.” The barWidth is a real num-
ber specifying the width of the bars in the units of the X axis. The barOffset is a real number speci-
fying how much the bar of the i-th data set is offset from the previous one. This allows bars to “peek
out” from behind the ones in front. Note that the front-most data set will be the first one.

6.4.6 Histograms
To configure a histogram on a set of data, use

<bin width="binWidth" offset="binOffset"/>

The binWidth option gives the width of a histogram bin. I.e., all data values within one binWidth
are counted together. The binOffset value is exactly like the barOffset option in bar graphs. It
specifies by how much successive histograms “peek out.”

Histograms work only on Y data; X data is ignored.

6.5 Old Textual File Format
Instances of the PlotBox and Plot classes can read a simple file format that specifies the data to be

plotted. This file format predates the PlotML format, and is preserved primarily for backward compat-
ibility. In addition, it is significantly more concise than the PlotML syntax, which can be advanta-
geous, particularly in networked applications.

In this older syntax, each file contains a set of commands, one per line, that essentially duplicate
150 Ptolemy II

Plot Package
the methods of these classes. There are two sets of commands currently, those understood by the base
class PlotBox, and those understood by the derived class Plot. Both classes ignore commands that they
do not understand. In addition, both classes ignore lines that begin with “#”, the comment character.
The commands are not case sensitive.

6.5.1 Commands Configuring the Axes
The following commands are understood by the base class PlotBox. These commands can be

placed in a file and then read via the read() method of PlotBox, or via a URL using the PlotApplet
class. The recognized commands include:
• TitleText: string
• XLabel: string
• YLabel: string

These commands provide a title and labels for the X (horizontal) and Y (vertical) axes. A string is
simply a sequence of characters, possibly including spaces. There is no need here to surround them
with quotation marks, and in fact, if you do, the quotation marks will be included in the labels.

The ranges of the X and Y axes can be optionally given by commands like:
• XRange: min, max
• YRange: min, max

The arguments min and max are numbers, possibly including a sign and a decimal point. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes.

The tick marks for the axes are usually computed automatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1, 2, or 5 are used). However, they can also be specified explicitly using commands like:
• XTicks: label position, label position, ...
• YTicks: label position, label position, ...

A label is a string that must be surrounded by quotation marks if it contains any spaces. A position is
a number giving the location of the tick mark along the axis. For example, a horizontal axis for a fre-
quency domain plot might have tick marks as follows:

XTicks: -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

The X and Y axes can use a logarithmic scale with the following commands:
• XLog: on
• YLog: on

The tick labels, if computed automatically, represent powers of 10. The log axis facility has a number
of limitations, which are documented in “Limitations” on page 6-154.

By default, tick marks are connected by a light grey background grid. This grid can be turned off
with the following command:
• Grid: off

It can be turned back on with
• Grid: on
Heterogeneous Concurrent Modeling and Design 151

Plot Package
Also, by default, the first ten data sets are shown each in a unique color. The use of color can be
turned off with the command:
• Color: off

It can be turned back on with
• Color: on

Finally, the rather specialized command
• Wrap: on

enables wrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value of points is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea-
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
in X.

All of the above commands can also be invoked directly by calling the corresponding public meth-
ods from some Java code.

6.5.2 Commands for Plotting Data
The set of commands understood by the Plot class support specification of data to be plotted and

control over how the data is shown.
The style of marks used to denote a data point is defined by one of the following commands:

• Marks: none
• Marks: points
• Marks: dots
• Marks: various
• Marks: pixels

Here, points are small dots, while dots are larger. If various is specified, then unique marks are
used for the first ten data sets, and then recycled. If pixels is specified, then a single pixel is drawn.
Using no marks is useful when lines connect the points in a plot, which is done by default. If the above
directive appears before any DataSet directive, then it specifies the default for all data sets. If it
appears after a DataSet directive, then it applies only to that data set.

To disable connecting lines, use:
• Lines: off

To re-enable them, use
• Lines: on

You can also specify “impulses”, which are lines drawn from a plotted point down to the x axis.
Plots with impulses are often called “stem plots.” These are off by default, but can be turned on with
the command:
• Impulses: on

or back off with the command
• Impulses: off

If that command appears before any DataSet directive, then the command applies to all data sets. Oth-
erwise, it applies only to the current data set.
152 Ptolemy II

Plot Package
To create a bar graph, turn off lines and use any of the following commands:
• Bars: on
• Bars: width
• Bars: width, offset

The width is a real number specifying the width of the bars in the units of the x axis. The offset is a
real number specifying how much the bar of the i-th data set is offset from the previous one. This
allows bars to “peek out” from behind the ones in front. Note that the front-most data set will be the
first one. To turn off bars, use
• Bars: off

To specify data to be plotted, start a data set with the following command:
• DataSet: string

Here, string is a label that will appear in the legend. It is not necessary to enclose the string in quota-
tion marks.

To start a new dataset without giving it a name, use:
• DataSet:

In this case, no item will appear in the legend.

If the following directive occurs:
• ReuseDataSets: on

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is turned off, so datasets with the
same name are not merged.

 The data itself is given by a sequence of commands with one of the following forms:
• x, y
• draw: x, y
• move: x, y
• x, y, yLowErrorBar, yHighErrorBar
• draw: x, y, yLowErrorBar, yHighErrorBar
• move: x, y, yLowErrorBar, yHighErrorBar

The draw command is optional, so the first two forms are equivalent. The move command causes a
break in connected points, if lines are being drawn between points. The numbers x and y are arbitrary
numbers as supported by the Double parser in Java (e.g. “1.2”, “6.39e-15”, etc.). If there are four num-
bers, then the last two numbers are assumed to be the lower and upper values for error bars. The num-
bers can be separated by commas, spaces or tabs.

6.6 Compatibility
Figure 6.10 shows a small set of classes in the compat package that support an older ascii and

binary file formats used by the popular pxgraph program (an extension of xgraph to support binary
formats). The PxgraphApplication class can be invoked by the pxgraph executable in $PTII/bin. See
the PxgraphParser class documentation for information about the file format.
Heterogeneous Concurrent Modeling and Design 153

Plot Package
6.7 Limitations
The plot package is a starting point, with a number of significant limitations.

• A binary file format that includes plot format information is needed. This should be an extension
of PlotML, where an external entity is referenced.

• If you zoom in far enough, the plot becomes unreliable. In particular, if the total extent of the plot
is more than 232 times extent of the visible area, quantization errors can result in displaying points
or lines. Note that 232 is over 4 billion.

• The log axis facility has a number of limitations. Note that if a logarithmic scale is used, then the
values must be positive. Non-positive values will be silently dropped. Further log axis limita-
tions are listed in the documentation of the _gridInit() method in the PlotBox class.

• Graphs cannot be currently copied via the clipboard.

FIGURE 6.10. The compat package provides compatibility with the older pxgraph program.

plot package

PxgraphParser

+PxgraphParser(plot : Plot)
+parseArgs(args : String[])
+parseArgs(args : String[], base : URL)
+parsePxgraphargs(args : String[], base : URL)
+read(input : InputStream)

#_plot : Plot

Plot

configures

PlotApplet

+_read(input : InputStream)

PxgraphApplet

+PxgraphApplet()

PlotApplication

+main(args : String[])
#_about()
#_parseArgs(args : String[])
#_read(base : URL, input : InputStream)

PxgraphApplication

+PxgraphApplication()
+PxgraphApplication(args : String[])
+PxgraphApplication(plot : Plot, args : String[])

154 Ptolemy II

	6 Plot Package
	6.1 Overview
	6.2 Using Plots
	FIGURE 6.1. Result of invoking ptplot on the command line with no arguments.
	6.2.1 Zooming and filling
	FIGURE 6.2. To zoom in, drag the left mouse button down and to the right to draw a box around the...

	6.2.2 Printing and exporting
	FIGURE 6.3. Encapsulated postscript generated by the Export command in the File menu of ptplot ca...

	6.2.3 Editing the data
	FIGURE 6.4. You can modify the data being plotted by selecting a data set and then dragging the r...

	6.2.4 Modifying the format
	FIGURE 6.5. You can control how data is displayed using the Format command in the Edit menu, whic...

	6.3 Class Structure
	6.3.1 Toolkit classes
	FIGURE 6.6. The core classes of the plot package.

	6.3.2 Applets and applications
	1. Use fairly complex JavaScript to determine which browser is running and then to properly selec...
	2. Use the much simpler <applet> ...</applet> tag to invoke the Java Plug-in. This method works o...
	FIGURE 6.7. Core classes supporting applets and applications. Most of the time, you will use the ...
	FIGURE 6.8. UML static structure diagram for the plotml package, a subpackage of plot providing c...

	6.3.3 Writing applets

	6.4 PlotML File Format
	6.4.1 Data organization
	FIGURE 6.9. The document type definition (DTD) for the PlotML language.

	6.4.2 Configuring the axes
	6.4.3 Configuring data
	6.4.4 Specifying data
	6.4.5 Bar graphs
	6.4.6 Histograms

	6.5 Old Textual File Format
	6.5.1 Commands Configuring the Axes
	6.5.2 Commands for Plotting Data

	6.6 Compatibility
	FIGURE 6.10. The compat package provides compatibility with the older pxgraph program.

	6.7 Limitations

