
JAVA -1

Topic 1: Numerical Integration

1.1 Introduction
The aim of the document is to cover the practical aspects for numerical integration and how
to use the local JAVA integrator classes to perform simple numerical integration. This doc-
ument does not cover error analysis, accuracy of speed consideration or optimal choice of
techniques. For this see and good text book on numerical computing.

1.2 The Basics
The aim of numerical integration is to numerically calculate an approximation solution to the

∂y
∂x = f (x,y)

where there is an analytical expression for f (x,y), but it cannot be analytically integrated. More
generally we have N couples equations of the form

∂y1
∂x = f1(x,y1,y2, · · · ,yN)

∂y2
∂x = f2(x,y1,y2, · · · ,yN)

· · · = · · ·
∂yN
∂x = fN(x,y1,y2, · · · ,yN)

where each fi is analytic, and we want a numerical solution for the y1, · · · ,yN over the range
a → b, subject to an initial condition, being the values of y1, · · · ,yN at x = a. In many occasions
we will be dealing with the case that x is time and we will be starting with x = 0, but this is not
always the case.
In many occasions we will actually have higher order differential equations, but these can
always be written as coupled first order equations by using intermediate variables. We will
see an example of this when we consider implementation of the second order forced harmonic
oscillator equation in the programming examples. This means that the first order scheme in all
that is needed for one-dimensional problems.

1.3 Integration Schemes
All the simple, linear, integration schemes have the same basis concept, so to solve,

∂y
∂x = f (x,y)

start at x = a, with initial condition of y = y0, and calculate y at intervals ∆x by the recurrence
relation that

yi+1 = yi +∆x
[

∂y
∂x

]

Estimate
the two problems being (a) how to estimate the derivative and (b) how to set the step size. We
will consider the derivative first, since this is actually the biggest problem.

School of Physics Java Support Revised: 3 January 2006

JAVA -2

1.3.1 Euler Integration

The simplest scheme to evaluate the derivative at the current x,y values, so the relation simply
becomes,

yi+1 + yi +∆x f (xi,yi)

where xi = a + i∆x. This scheme is know an EULER INTEGRATION as is shown in figure 1.
This scheme assumes that the derivative is constant over the interval ∆x, which is almost always
a very poor assumption. In fact for all non-trivial cases1, the simple EULER scheme is totally
useless since for most functions the errors e in each step add in one direction, so the integration
goes totally wrong; making the step ∆x smaller in an attempt improve things also often simply
makes it go wrong faster. The simple first order EULER should only ever be used as as example
of how not to do numerical integration.

∆ x

e
y

x

Actual Function

yι

ι

ι+1

x xι+1ι

f(x ,y)ι

Figure 1: The Euler integration scheme.

1.3.2 Improved Euler Integration

The next level of approximation is to calculate the derivative as the start and end of the ∆x
interval and average. This gives the IMPROVED EULER integration scheme. At the start of the
interval we have xi,yi, so the derivative is simple f (xi,yi), which is exact. At the end of the
interval we have that xi+1 = xi +∆x, but we need as estimate for yi+1, which we take to be the
simple first order EULER estimate, given by,

y′ + yi +∆x f (xi,yi)

The estimate for the derivative at the end of the interval is now f (xi+1,y′), so the IMPROVED
EULER scheme becomes,

yi+1 = yi +
1
2

∆x
[

f (xi,yi)+ f (xi+1,y′)
]

which is shown in figure 2. This scheme is much more stable, and is a viable integration scheme
for simple fictions where the rate of change of the fi are small. This is the simplest scheme that
is likely to give sensible answers.

1where the solution is analytic anyway!

School of Physics Java Support Revised: 3 January 2006

JAVA -3

∆ x
x

yι

ι

x xι+1ι

f(x ,y)ι

f(x , y’)
y’ ι+1

y
ι+1

Actual Function

Figure 2: The Improved Euler integration scheme.

1.3.3 Runge Kutta Integration

The next level of sophistication is the four point RUNGE KUTTA scheme, often known as RK4.
This is essentially a double IMPROVED EULER scheme where we estimate the derivative at four
locations over the ∆x internal, one at xi, two at xi + ∆x/2 and one at xi+1. The derivative used
to step the yi forward to yi+1 is then a weighted average of these four estimates.
If we write x = xi, then at the start of the interval we have the exact derivative being,

k1 = f (x,y)

we then use a simple EULER step a distance ∆x/2, to get an estimated position at the middle of
the interval being,

x1 = x+
∆x
2

and y1 = y+
∆x
2

k1

The first estimate for the derivative at the centre is then given by the derivative at x1,y1, so
being,

k2 = f (x1,y1)

We now use this estimate for the derivative to to form a second estimate at x1, being

y2 = y+
∆x
2

k2

The second estimate for the derivative at the centre is given by the derivative at x1,y2, so is
given by

k3 = f (x1,y2)

We now use this second estimate of the derivative to give an estimate for the point at the end of
the internal, again using a simple EULER step, so giving at point,

x2 = x+∆x and y3 = y+∆xk3

and finally we form an estimate for the derivative at the end of the interval, being,

k4 = f (x2,y3)

giving us the required four estimates for the derivatives with their locations shown in figure 3.
The Runge Kutta step is then to form a weighed average of these four estimates with the two at
the half step location weighted double, giving the scheme to be,

yi+1 = yi +∆x
[

1
6 k1 +

1
3 k2 +

1
3 k3 +

1
6 k4

]

School of Physics Java Support Revised: 3 January 2006

JAVA -4

∆ x
x

Actual Function

x xι+1ι

y

y

y

y

k

k

k
1

2

3

1

2k

3

4

Figure 3: Location of derivative estimates in the four step Runge Kutta integration scheme.

This combination of point can be shown2 to minimise the error, with the errors being of the
order ∆x5. More importantly the error is independent of the form of the derivatives of the f ().
This is particularly important in gravitational or eletrostatic orbits calcualtions, since this leads
to conservation of total energy in the system.
Clearly there is a computational cost in this method since the functions have to evaluated at
four point to take a single step. This means that Runge Kutta tends to be slow, but very reliable,
and provided that the step size is small enough, can be used to numerically solve a very wide
variety of coupled differential equations. For most people this is the the only algorithm you
will ever need, and should generally be the first scheme you should try, and then investigate
more complex schemes if you need more speed or you get unreliable results.

1.4 Extending to coupled equations.
The above schemes can be easily extended to a set of N coupled differential equations by
making the y and f to be a vector of length N, so the equation to solve can be written at

∂y
∂x = f(x,y)

and in the particular case of the four point Runge Kutta scheme, we have that

yi+1 = yi +∆x
[

1
6 k1 +

1
3 k2 +

1
3 k3 +

1
6 k4

]

where the ki and also vector of length N that contains the derivatives at the particular (x,y)
locations. As we will see below, formulating the integration scheme in this general form allow
us to write a single integrator class that can be applied to a range of differential equations.

1.5 The step size
Selecting the correct step size ∆x for integration is a very problem dependent issue. If the step
size is too large and there are rapid variations in fi(), these will be missed and significant errors
will occur, while if the step size is too small there will be excessive computational time, and in
extreme cases, the very large number of calculations actually reduce the overall accuracy due
to build-up of rounding errors in the calculation.

2see for example Numerical Recipes or any other text book on numerical methods.

School of Physics Java Support Revised: 3 January 2006

JAVA -5

The simplest scheme is to try running the algorithm with a range of fixed step sizes and see
what happens by graphing the components of yi against x. You are ideally looking for the
largest step size that gives a consistent solution, and in particular when halving the step size
make no difference to the final solution. You can then be fairly confident that you have found
a useful step size that will give you a meaningful solution in the minimum of computer time.
Clearly this is a somewhat ad-hoc scheme, but in many conditions where all you want is a
single solution to a set of equations, this is a far as you need to go.
In some conditions we want the step size of adapt during the calculation, in particular becoming
larger where the fi() equations are slow varying, and becoming smaller where they vary rapidly.
The simplest scheme to do this is a half/double scheme shown in figure 4.

∆ x ∆ x

y
y

y

yn

d

t

y yn

y

yh

m

Double

Half

x x x

x

∆ x

xxh

n

n

d

Figure 4: Layout of the double/half step scheme for adaptive step size.

Starting with a step size of ∆x, then from a position (x,y) we form one forward step to (xn,yn),
this is the reference position, we then,

1. Try in increase the step, by calculating

(a) the next position using step size ∆x, giving (xd ,yt)

(b) the double step starting at (x,y) with a step size of 2∆x, giving (xd ,yd).

Now if yt and yd are sufficiently close, within a specified accuracy criteria, then we take
(xd,yt) are being are current point and increase the step size of 2∆x for the next step.

2. if increasing the step size fails, then we have to check we done have to reduce it. Again
taking (xn,yn), as the reference position, we calculate,

(a) the half way position with step of ∆x/2, being (xh,yh),
(b) step the position forward again by ∆x/2, to give a (xn,ym),

3. if yn is sufficient close to ym, then the current step size of ∆x is valid,

4. if this test fails, then ∆x is too large, since greater is obtained by using ∆x/2, so reduce
step size to ∆x/2, and the current point becomes (xh,yh).

School of Physics Java Support Revised: 3 January 2006

JAVA -6

This scheme allows the step size to vary during the calculation while retaining a specified
accuracy.
This scheme has two practical problems, these being:

1. the computational time taken testing for the optimal step size often outweights the ad-
vantage,

2. for simple slow varying functions the step size can become unreasonable huge; this is
a particular problem is simple orbit problems where the step size can become a sizable
fraction of the orbit period.

Adaptive step-size is however a useful scheme especially when the rate of change of the
f (x,y1, . . . ,yN) varies significantly over the range of interest. A good example is a highly
elliptical satellite orbit where you want large step sizes during most of thge orbit appart from
when it is close to its attractor, where you need very small steps.
This scheme is build into the integrator class described in the code section.

Example of Simple Harmonic Oscillator
The above description is somewhat abstract, but lets consider the example of a forced damped
simple harmonic oscillator with a mass m, spring constant k, damping coefficient b with a
forcing frequency ω and amplitude a, giving the second order differential equation of

mẍ +b ẋ+ k x = a cos(ω t)

where x is displacement and ẋ the velocity. We first divide through by m, to get,

ẍ+ γx+ω2
0 x = α cos(ω t)

where γ = b/m, α = a/m and ω2
0 = k/m where we recognise that ω0 is the natrual frequency

of the system. This system is easily anaytically solvable in the steady state condition but
is analytically tough in the transient stage; it therefore makes a good experimental test for
numerical integration since you clearly know what should happend as t → ∞.
To numerically calcuate this we need for formulate it as a pair of coupled first order differential
equations by defining

x = t , y1 = x , y2 = ẋ

so that x is the time varaible, y1 the displacement, and y2 the velocity. This gives the coupled
equations as,

∂y1
∂x = y2

∂y2
∂x = α cos(ωx)− γy2 −ω2

0 y1

which is in the exact form required. This type of re-arrangement is essentail to prior to any
programming. How this is actually programmed in described in the next section.

School of Physics Java Support Revised: 3 January 2006

JAVA -7

Range of variables
A computer hold floating point number to a fixed precission, this being typically 12 signifi-
cant figures when using JAVA double types. This means you have to take extreme care when
combining very large and very small numbers. On all computers,

c+h = c

where c is the speed of light and h is Plank’s constant in SI units!
To prevent these type of problems you need to use units appropriate to the task so all variables of
are comparable numerical size. A good working rule is you want to |x|, |yi| < 1000 throughout
the calculation3.
This is one of the most common problem areas in numerical integration and some of the steps
you will require to do this are:

1. Combine very large or small constants in equations, for example in Boltzman distribu-
tions use

α =
h
k

or where possible scale units to that such constants become unity.

2. Use sensible distance, time and energy units, for example in atomic orbital calcualtions
used Angstrons, femto or pecoseconds and eVs, in Earth satellite ortbits use km and
kiloseconds, and in particle interactions used GeV (or TeV), and femtoseconds.
In practice few probelms can be solved numerically in SI units.

3. Avoid unrealistic starting conditions, for example a “comit” started at many light years
distance from the Sun with a time step of a second, may simple never move, or worse
wander in a random direction since the its realtive change in position may be less than
the numerical accuracy of the computer!

If when you run the calculations you get huge or tiny values for your solved yi, it is unlikely
they will be very accurate and you need to rethink your units and scaling.

Java Code
To use the JAVA code we need firstly to look at some of the support classes.

DataDerivative class
This class holds a single data-derivative with one x value and an array of ∂yi/∂x for i =
0, . . . ,N − 1. All the internal values are held as doubles and has supporting method to ac-
cess and manipulate these values. This class and DataPoint definded below, are central to the
integrator being used to define the differential equations, set starting conditions and return
solved solutions.
Constructors: There are three constructors, being

3This may not always be possible but is a good working target.

School of Physics Java Support Revised: 3 January 2006

JAVA -8

1. DataDerivative() default constructor to form a blank DataDerivative with x = 0 but
does not define y[] array which is set to null. This is included for GURU’s who may
want to extend this class.

2. DataDerivative(int size) constructor to form a DataDerivative with x = 0 and the
y[] array of length size which is set to zero. This is the most common and safest con-
structor.

3. DataDerivative(double x, double y[]) constructor to form DataDerivative with
specified x and y[] double array. Note this does not take a local copy of the array.

In addition this class implements Cloneable, with method

• DataDerivative clone() which return a clone of the current DataDerivative where the
y-array as also cloned.

Setters: The internal (private) variables can be set by the following methods:

1. void setX(double x) sets the x value.

2. void setY(int i, double yValue) sets the ith component of the y[] array. It assume
thats i < size(), the length of the y[] data array.

3. void setY(double y[]) sets the y[] data array, note does not take a local copy of the
array.

Getters: The internal variables can be read by the following methods:

1. double getX() gets the x value.

2. int size() gets the size, or length, or the y[] array.

3. double getY(int i) gets the ith element of the y[] array.

4. double[] getY() gets the y[] data array.

5. String toString() gets the DataDerivative as a formatted String.

DataPoint class
This class holds a single data-point with one x value and an array of yi for i = 0, . . . ,N − 1.
It extends DataDerivative defined above, with the same internal structure and methods, but
adds additional control methods.
Constructors: There are three constructors, being

1. DataPoint() default constructor to form a blank DataPoint with x = 0 but does not
define y[] array which is set to null. This is included for GURU’s who may want to
extend this class.

2. DataPoint(int size) constructor to form a DataPoint with x = 0 and the y[] array of
length size which is set to zero. This is the most common and safest constructor.

School of Physics Java Support Revised: 3 January 2006

JAVA -9

3. DataPoint(double x, double y[]) constructor to form DataPoint with specified x
and y[] double array. Note this does not take a local copy of the array.

In addition this class implements Cloneable, with method

• DataPoint clone() which return a clone of the current DataPoint where the y-array as
also cloned.

Additional Setters: The internal variables can also be incremented by,

1. void addToX(double step) add the value step to the current x.

2. addToY(int i, double delta) add the value delta to the ith component of the y[]
array.

Error Methods: The following methods for obtaining the error between the current DataPoint
and a supplied DataPoint are available.

1. double squareError(DataPoint p) calculates the normalized square error between
y[] array in the current DataPoint and the y[] array in the supplied DataPoint p.

2. double maximumError(DataPoint p) calcualte the maximum square error between
y[] array of the current DataPoint and the y[] array of the supplied DataPoint p.

3. error(DataPoint p) the default calculated error between y[] array of the current Dat-
aPoint and the y[] array of the supplied DataPoint p. The default error, is squareError,
but this can be changed by setDefaultError() method below.

4. void setDefaultError(int type) Method to set the meaning of default error re-
turned by error() method. The current implemented values are:

(a) 0 to give squareError, the default.
(b) 1 to give maximumError.

These methods are called by the Integrator class when setting variable step size and are not
normnally called by users except during DEBUGGING.
There are two other more advanced methods being

1. DataPoint eulerStep(DataDerivative delta,double step)with return a new Dat-
aPoint after a Euler forward step.

2. DataPoint weightedStep(DataDerivative delta[], double w[], double step)
with rerturns a new DataPoint after a weighted step forward.

These can be overloaded in extending classes to allow integrator to be used with more ad-
vanced data structutures. Strictly GURU land, see the JAVADOC for details.

School of Physics Java Support Revised: 3 January 2006

JAVA -10

DiffEquations class
This is an abstract class that must be extended buy the user to implement the differential equa-
tion for the particular problem. There is one method that must be overloaded by the extending
class that does the work being,

• DataDerivative evaluate(DataPoint p) which must calculate the differetials ∂yi/∂x
at the specify DataPoint p and return them in as DataDerivative.

This method is called by the Integrator class to actually do the integration.
The class is best explained by considering programming the simple harmonic problem, with a
class HarmonicEquations detailed below:

import uk.ac.ed.ph.integrator.*; // (1)

public class HarmonicEquations extends DiffEquations { // (2)
private double omegaSqr; // (3)
private double gammaValue; // (4)
private double omegaForce; // (5)
private double ampForce; // (6)

public HarmonicEquations(double omegaZero,
double gamma,
double omega, double a) { // (7)

omegaSqr = omegaZero*omegaZero; // (8)
gammaValue = gamma; // (9)
omegaForce = omega; // (10)
ampForce = a; // (11)

}

public DataDerivative evaluate(DataPoint p) { // (12)
double x = p.getX(); // (13)
double y[] = p.getY(); // (14)
DataDerivative d =

new DataDerivative(p.size()); // (15)
d.setX(x); // (16)
d.setY(0,y[1]); // (17)
d.setY(1, ampForce*Math.cos(omegaForce*x) -

(gammaValue*y[1] + omegaSqr*y[0])); // (18)
return d; // (19)

}
}

Look at the code line of the above class line at a time.

(1) Include the integrator classes.

(2) Class must extend the abstarct Diffequations class.

School of Physics Java Support Revised: 3 January 2006

JAVA -11

(2)→(6) internal variables.

(7) Constructor for class with four parameters.

(8)→(11) set the internal varaibles with parameters.

(12) Start of DataDerivative evaluate method with DataPoint parameter.

(13)→(14) get x and y[] to local variables. Note y[0] holds displacement and y[1] the velocity.

(14) Create new DataDerivative of right size to hold derivatives.

(16) Set the x value to be same at supplied DataPoint.

(17) Set ∂y[0]/∂x to supplied velocity.

(18) Set ∂y[1]/∂x to acceleration.

(19) return DataDerivative holding derivatives.

Integrator class
The Integrator is the main class that performs the integration. The Integerator class itself
is abstract with the actual integration performed by one of the three extending classes. All
these classes share a common set of methods allowing a whole range of control and outputs.
The Integrator class is extended from Vector<DataPoint> so inherits the methods from the
Vector class which is part of the java.util package.
Constructors: There are three constructor that implement three type of integration, there be-
ing:

1. Euler(DiffEquations eqns) class to implment the simple Euler integration scheme
using the supplied DiffEquations. This is not practical useful scheme, and should only
be used to see what goes wrong!

2. ImprovedEuler(DiffEquations eqns) class to implment the improved Euler integra-
tion scheme using the supplied DiffEquations.

3. RungeKutta(DiffEquations eqns) class to implment the RungeKutta integration scheme
using the supplied DiffEquations.

Startup Methods:

1. setStartConditions(DataPoint p) method to set the starting conditions to the spec-
ified DataPoint. This point becomes the first solution point and the current point.
If this method is called a second time after performing a solve, then all previoulsy stored
solved DataPoint are lost and the integration is re-started.

2. setStep(double step) set the integration step size. If the fixed step scheme is used
this will be constant throughout the integration, while if the adaptive step scheme is used
this will be the initial step size. If not called the step size defaults to 0.01.

School of Physics Java Support Revised: 3 January 2006

JAVA -12

3. setMaxStep(double step) sets the maximum allowed step size when using the adap-
tive step scheme, defaults to Double.MAX VALUE.

4. setAccuracy(double acc) set the error accuracy criteria for adaptive step size, default
value is 10−7.

5. setMinStep(double step) sets the minumum allowed step size when using the adap-
tive step scheme, defaults to 0.0.

6. setAdaptiveTestInternal(int n) set the number of steps between adaptive tests. If
not called, defaults to 1, so adaptive test is done every step.

7. setVerbose(boolean b) set verbose mode, where in adaptice step size mode, changes
in step size are printed to System.out.

Solving Methods: There is only one solve method being:

1. DataPoint solve(double xEnd, boolean adaptive) solves from the current point,
usually set by setStartConditions() until x-coordinate of the solution ≥ xEnd. If
adaptive is true then double/half adaptive step size is used, otherwise fixed step size is
used.
At the end of the integration the method returns the current DataPoint, being the last
point solved for.
On completion, the current point will be set to the last point solved for, so subsequent
calls to solve with a larger xEnd will result in continuting the solution to the new xEnd
value.
By default, the DataPoint at every step is stored in the underlying Vector class, and can
be accessed as descibed below. This behaviour can be controlled, see GURU methods at
the end.

Reading out solved DataPoints: The default action is to store all solved DataPoints is the
underlying Vector with can be accessed as follows:

1. int size() get the number of stored DataPoints (inherited from Vector).

2. DataPoint get(int i) get the ith DataPoint. (inherited from Vector).

3. All other Vector methods, for example firstElement(), lastElement() all work.

Note also that last DataPoint solved for is returned by the solve methods.
For most application, this is all that is needed.

Guru Features
The Integrator class has a series of other methods and features to make it more flexible or
return more information about the operation.

School of Physics Java Support Revised: 3 January 2006

JAVA -13

1. setSaveInternal(int interval) changes the interval between saves of the current
DataPoint to the underlying Vector. This does not affect the accuracy of the calculation
just how often it is saved. The deafult is 1, so every point is saved.
Note: setting is 0 results in no DataPoint being saved, so only the last solved for Data-
Point returned by solve is available. This is sulaully conbined with the SolveMonitor
classes below.

2. double getStep() return the last step sized used.

3. int getStepNumber() gets the number of steps in the integration. This does not depend
on the save interval set via setStepInterval, so may differ from the size() of the
Vector of solutions.

SolveMonitor Class
This is an class that that allows a monitor method to be called periodically by Integrator during
the solve process. This is an alternative method for obtaining solved DataPoint, but is mainly
added to allow integrator to act as the driver for graphical animations.
SolveMonitor is declared as abstract and has one method that must be overloaded in an ex-
tending class, this being

• void updateMonitor(DataPoint p) which is called by the Integrator with the cur-
rent DataPoint as its parameter.

This is then controlled with the Integrator methods,

1. void addMonitor(SolveMonitor m, double interval)which will result in the SolveMonitor
method updateMonitor() being called at x intervals of interval.
This is not related to the step size, and will be called at equal4 x intervals even if the
adaptive scheme is used.

2. void setMonitorInterval(double interval) set (or resets) the monitor interval for
attached SolveMonitor.

3. void setMonitorTimeInternal(int t) sets the minimum time interval in msecs be-
tween calls to updateMonitor(). Default is 0.
If set to > 0 the solve thread will be put into a sleep state until the next update is
due. This methods used the software system clock in msecs to is likely to have ±1 msec
variability.

4. void removeMonitor() removes any attached SolveMonitor.

There is one predefined SolveMonitor that gives simple formatted output, that being PrintMonitor,
constructors

1. PrintMonitor() default constructor to give formatted output to System.out which is
normally the terminal screen.

4it will actually be called at the step when x ≥ monitor interval.

School of Physics Java Support Revised: 3 January 2006

JAVA -14

2. PrintMonitor(File file) gives formated output to file specified by file.

3. PrintMonitor(String fileName) gives formatted output to a file specified by fileName.

If the file is not available for writting, then it will default to System.out.
The format of the DataPoint is performed by the DataPoint method formatPoint which is
currently set to format x y0 y1 . . . on a single line with space between each number and no other
format. This being the easiest format to read into other graphical packages.
The real aim of this class it to drive graphical animations where you are required to write your
own class, extending SolveMonitor, to do the graphical update. You would then typically:

1. Attach your monitor class via addMonitor() setting the x interval for updated.

2. Optionally set the minumum time interval for updates using setMonitorTimeInterval().
This will typically be needed to give a smooth animation and to stop the animation speed
varying depending on processor, garphics, network speeds.
Also for simple equations, stopping it going too fast.

3. Set setSaveInternal(0), which will stop interdediate DataPoint being stored in the
underlying Vector.

4. start the solve with a very large xEnd, for example Double.MAX VALUE which will no-
ramally cause it to loop for ever. It is expected that the application will the terminated by
one of its other threads, like a STOP button on the graphical panel!

Getting animations to work well is rather tricky, and in many cases the much of the program-
ming effort and complexity is likely to be in the monitor class which has to do all the work.

School of Physics Java Support Revised: 3 January 2006

