
SCIENTIFIC PROGRAMMING -1

13 File Output and Input
This section contains additional material regarding writing and reading from files. It is not
needed for the second year course, but is essential for future programming. It is strongly
suggested that you read and work through this section in your own time to develop your own
programming skills and understanding of the language.

13.1 Introduction
To make programs really useful we have to be able to input and output data in large machine-
readable amounts, in particular we have to be able to read and write to files. Since JAVA has
extensive network and WEB support built in the input and output system is very complex, but
for simple applications this can be simplified to a few recipes.

13.2 The Basics
There are two types of input and output schemes in JAVA these being (a) character based and
(b) binary data based1. In this section we will only consider the character based files where
output files typically hold tables of numbers to be printed, and input files are created by the
editor.
The JAVA file model contains three parts, these being

1. The file on disc which is characterised by its name and other attributes such as read/write
permission, creation date etc.

2. The high-level Reader/Writer classes that implement simple to use methods to read/write
Strings and Lines.

3. The Stream classes that connect the high level Reader/Writer classes to the actual files.

In this section we will give a recipe for connecting these three together, so that you will only
have to deal with the high-level Reader/Writer classes.

13.3 Output with the PrintWriter class
The PrintWriter class implements simple character based file output as shown in the example
below.

import java.io.*; // (1)
public class PrinterTest {

public static void main(String args[]) throws IOException { // (2)
String fileName = "mydata.data"; // (3)
PrintWriter output = new PrintWriter(

new FileWriter(fileName)); // (4)

output.println("John Xavier Smith"); // (5)
1There also the distinction between sequential and random access which will not be discussed here.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -2

output.println("Holland House Annex"); // (6)
output.println("Pollock Hall of Residence"); // (7)
output.println("Edinburgh"); // (8)

output.close(); // (9)
System.exit(0);

}
}

Looking at this Line-by-line,

(1) Import the java.io classes, this make the file manipulation classes available in your
programme.

(2) Start of main program. You must add throws IOException to warn the compiler that
this program may generate a exception (or error), from the IO classes. (See the advanced
sections of book on how to catch exceptions.)

(3) Create a String holding the name of the file we wish to write to.

(4) Create a FileWriter object to write to the specified file and also create a PrintWriter
which implements easier to call methods. (Use as recipe).
Note if the specified file does not exist, it is created, if it does exist it is overwritten and
the contents of the original file lost.

(5-8) Write a series of lines to the output file. Note the syntax of println is identical to that
of the Display object used throughout the course.

(9) Close the file, this also causes the contents to be flushed to disc. Failure to call this will
result in some, if not all, of the contents of the files being lost.

So once the PrintWriter is created and attached to the output file the actual writing of the data
is very simple, you basically send Strings that are appended into the current position in the
file. There are other output methods associated with PrintWriter to output Strings, ints,
doubles, booleans, with and without newlines, however for most programs the above strategy
of,

1. Form an output line as a String.

2. output with println or printf.

is what you actually need.
Aside: In your early programs you used System.out.println() to output Strings to the
terminal screen. Here you were actually using a pre-opened PrintWriter connected to the
“standard output stream” (System.out) which for interactive programs goes to the terminal
window that started them.
For a fuller example, see CosPrinter.java on the examples page which outputs to file the x,y
coordinate pairs of a cos() graph with input parameters via the Display class.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -3

13.4 Input with the BufferedReader class
Reading in of data from a file is slightly more complex, the simplest interface being offered by
BufferedReader2 which is again best explained by an example that reads a line at a time from
the file and outputs it to the screen.

import java.io.*;
public class ReaderTest {

public static void main(String args[]) throws IOException {
String fileName = "mydata.data";
BufferedReader input = new BufferedReader(// (1)

new FileReader(fileName));

String line; // (2)
while ((line = input.readLine()) ! = null) { // (3)

System.out.println(line); // (4)
}

input.close(); // (5)
}

}

The initial set up and definition of main is exactly as for the PrintWriter, the new lines are:

(1) Create a FileReader connected to the input file and a BufferedReader called input
“on-top” (which implements the simpler interface).
If the input file does not exist, or cannot be read, then an IOException results and the
program will exit with a suitable message. (See advanced sections of books on catching
exceptions.).

(2) Create an empty String to receive the input data.

(3) Use the method readLine() to read the next line from input, returning a String.
If readLine() fail to read a line, typically due to running off the end of the file, it will
return the null String. This loop therefore runs until there are no more lines to be read
from the input file. Note the order of the brackets, this forces the statement

line = input.readLine()

to executed before the conditional test.

(4) Output the String we have just read to the terminal output.

(5) Close the input file, not essential but good programming practice.

So again as with PrintWriter, if the syntax for opening the BufferReader is used as a recipe,
the reading of lines from a input file is very simple. The real difficulty is in interpreting the
input String, for example if you want to read ints or doubles into your program. Here the
best strategy is to read the input file “line-at-a-time” and then break up the input line extracting
ints or doubles inside your program. See the next section for this.

2You would logically think that there should be a PrintReader class, but there is not one.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -4

13.4.1 Input from the keyboard with BufferedReader

Unlike most other languages the current JAVA does not offer a simple “read string from key-
board”3, but this can be implemented by BufferedReader as follows, which prompts the user
for an input, reads the line and then outputs it back to the screen

import java.io.*;
public class ReaderTest {

public static void main(String args[]) throws IOException {
BufferedReader keyBoard = new BufferedReader(// (1)

new InputStreamReader(System.in));
String line;
while (true) {

System.out.print("Type in a line : "); // (2)
line = keyBoard.readLine(); // (3)
System.out.println("The typed line was : " + line); // (4)

}
}

}

Again the initial setup and main is identical to above, the key lines are.

(1) Open a BufferedReader called keyBoard that reads from an input STREAM connected
to System.in, which is connected by default to the terminal key board. (Again use as a
recipe).

(2) Print a prompt to the terminal. Note the use of the print() method. This prints a String
but not a new line.

(3) Read a line from the keyBoard. This method will wait until you press RETURN.

(4) Output the line back to the terminal.

Note this program will loop infinitely, use CTRL-C to break out.

13.5 Breaking up input lines with Scanner

Most scientific programmers want to read numerical data into their programs, for example to
read in columns of numbers into arrays which the program then processes. This is always a
tricky problem especially if the exact format of the input lines is not known exactly so you
have to “hunt” for the start of the numbers which may be surrounded with stray WHITE SPACE
characters, such as SPACE, TAB etc. The problem is called TOKENIZING a string and there is
a very useful class with the JAVA util package that does almost all the work for you. The
following example does exactly what we want,

import java.util.*; // (1)
< --- usual start of program ----- >
String line = "Hello World and Welcome"; // (2)

3This is why you have been using the Display class for you initial programs.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -5

Scanner tokens = new Scanner(line); // (3)

while(tokens.hasNext()) { // (4)
String s = tokens.next(); // (5)
System.out.println("Token is : " + s); // (6)

}

Looking at the important lines, we have

(1) Import the java.util package that contains the Scanner class.

(2) Create a long String with multiple words.

(3) Create a Scanner object taking the long line as a parameter.

(4) Read the tokens formed. The method hasNext() is true if there is a token available for
reading.

(5) Read the next available token. The method next() returns the next available token as a
String.

(6) Print the returned token to the screen.

This piece of code will print out the four tokens, being “Hello”, “World”, “and”, “Welcome”.
For a working example of this, see the KeyBoardInput example from the Examples page. This
program prompts for an input line, reads it into a String, tokenizes it, and then prints the token
back out the the screen. Run this program with various input lines and see what it does. By
default Scanner assumes that there is a space between each token, this can however be altered
to a wide range of characters or logical combination of patterns, see JAVA documentation for
details.
This may look overly complex, but illustrates one of the main concepts in object oriented
programming. That is use of pre-defines, and hopefully, well tested objects to do the “work”.
You do not need to know what is inside Scanner you just need to know how to construct it
and access the tokens it generates. The more advanced your programming gets the more your
programs consist of objects and methods to access them.
Scanner is the new easy to use tokenizer object introduced to JAVA 5, the previous one being
StringTokenizer. Scanner has a simpler syntax, supports direct reading of int, double,
etc., and will also read direct from input files or even System.in. This last feature makes the
syntax of reading from files simpler, but I personally feel, makes debugging and error recovery
much more difficult. I suggest that novice programmers still use the strategy of,

1. Open file for reading

2. Read a line into a String.

3. Analyse the contents of the String

4. Try and read the next line. . .

and leaving anything more cleaver until they have mastered this scheme.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -6

13.5.1 Reading ints and doubles

We have seen above how to break a long line up into tokens, but when you read in data what you
will almost always want to do is to is set int or double values. Scanner provides method to
return token as int or double using the nextInt() and nextDouble methods4, so if a String
called line contains two doubles, we can read them with,

Scanner scan = new Scanner(line);
double x = scan.nextDouble();
double y = scan.nextDouble();

There are also very useful boolean companion methods with allow you to look ahead, to see
if the next token can be read as specified. For int and double these are,

boolean hasNextInt() and boolean hasNextDouble()

which will return true if the next token is a valid int or double respectively.
So putting this all together leads to the more complex example of PlotGraphFromFile from
the examples below, which uses the Display class to ask for an input file containing two
columns of numbers. The file is read in line at a time, tokenized and parsed into doubles and
then then plotted using SimpleGraph. This example also ignore blank lines and lines that start
with the # character which, by convention, is used to denote comment lines in a data file. You
can experiment with either data produced by the CosPrinter program or data typed into using
the emacs editor.
Note: This program will fail in a most un-graceful way if the data format is wrong, a data value
is missing or the file contains stray, unexpected, characters. Catching and dealing with such
errors is difficult and well beyond a simple programming course. However using the above
strategy of reading lines, then analysing them is the correct start. For example it would be easy
to put a check that we get two tokens form each line, and if not, print out a useful message
saying on which line of the input data file the error occurred. Testing and checking input is
vital to getting a program to work correctly and robustly.

13.5.2 Converting Strings to ints and doubles

In many applications you need to convert a single String into an int or a double. Clearly this
can be done with Scanner, but there are two simpler method, being Integer.parseInt() and
Double.parseDouble() respectively, that both take Strings as their parameter and return the
int or double value respectively. So in the code example below,

String intString = "-45";
String doubleString = "45.7643e-3";

int iValue = Integer.parseInt(intString);
double dValue = Double.parseDouble(doubleString);

then iValue will be set to −45 and dValue will be set to 0.0457643.
4There are also method to read Float, Byte etc.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -7

Unfortunately the parse methods also fail if there are stray leading or trailing WHITE SPACE
characters in the String5. To prevent this problem it is better to use the Stringmethod trim()
which returns a String with any leading or trailing WHITE SPACE characters removed. So a
better, and more robust, use of the parse methods is

String intString = " -45";
String doubleString = "45.7643e-3 ";

int iValue = Integer.parseInt(intString.trim());
double dValue = Double.parseDouble(doubleString.trim());

which, correctly, ignores leading or trailing spaces.

13.6 Summary and Additional Features
JAVA has possibly the most complete and thus complex input/output system of any computer
language allowing almost unlimited tailoring and optimisation. Here we have seen the very
basics of file input/output and how to read, tokenize and parse simple int and double inputs.
For many simple programs this is really all you will need. The two useful advanced areas worth
looking at are:

1. Binary data input/output were we read and write direct binary representations of num-
bers, strings etc. This is much more efficient that character input/output and is used
where there is large amounts of data, for example graphics files, images, sound files,
movies etc. In most cases there are high-level classes to handle various file types either
as part of JAVA or add-on packages, the most useful being java.imageio with handles
images in jpeg, png or bmp formats.

2. Pipe input/output where the reads/writes at to/from the write/reads of other programs.
This allows data to be transferred between programs, one program to control another or
data to be sent direct to system utilities, for example being able to print data directly to
system printer by “piping” your output directly to lpr, the standard system print com-
mand.

In addition there is a list of less common input/output areas, including “random access files”,
mainly used in data-base system, binary reading and writing complex objects where efficiency
is essential and network files access for example accessing a WEB page on a remote machine.

Examples
Source code for the following on-line examples are available,

• Read line from keyboard and tokenize with Scanner KeyBoardInput.

• Write x,cos(x) pairs out to a specified file with one pair on each line CosPrinter

• Complete program to read in data pairs from a file and plot using SimpleGraph PlotGraphFromFile
and some test data Here.

5This is the only place I know in JAVA where extra spaces do really matter.

SESSION 2005/2006 VERSION 3.4, 27 AUGUST 2005

~wjh/teaching/Scientific-Programming/examples/files/KeyBoardInput.java
~wjh/teaching/Scientific-Programming/examples/files/CosPrinter.java
~wjh/teaching/Scientific-Programming/examples/files/PlotGraphFromFile.java
~wjh/teaching/Scientific-Programming/examples/files/testdata.data

	File Output and Input
	Introduction
	The Basics
	Output with the PrintWriter class
	Input with the BufferedReader class
	Input from the keyboard with BufferedReader

	Breaking up input lines with Scanner
	Reading ints and doubles
	Converting Strings to ints and doubles

	Summary and Additional Features

