
SCIENTIFIC PROGRAMMING -1

12 Introduction to Objects
This section is required for the final, optional, checkpoint-6. If you are going on to do Computer
Simulation or have a general interest in computing, you are strongly advised to read this section
now.

12.1 The Basics
An object is a programming building block that is defined to have properties and a series of
methods that modify these properties, returns information from the object or instruct the object
to perform some task. This somewhat abstract concept is best looked at by taking one of the
objects we have been working with, the SimpleGraph object. This object has

1. Properties: for example colour of the graph, title of the graph, list of points to be plotted
etc.

2. Methods: to change these properties, for example setColor(), and to add data points
and to instruct the object to perform tasks, for example showGraph().

The internal workings of the object are hidden from the user who only creates instances of the
object (using a Constructor), and manipulates it using its own methods. This allows the object
to be a self contained and isolated from the programs that uses it. This has the advantage that
the object can be used in many different programs, but more important is that the object can be
tested, or replaced with an improved version (for example a more sophisticated one), and then
provided that the new object has the same methods then the the main program will work with
the new version.
This concept of having methods associated with the object and the internals of the object hidden
and only accessible via methods is central to the “object oriented” programming approach. The
problem of programming then becomes the design of objects to hold the data in a useful way
complete with methods to manipulate and interact with the objects.

12.2 A simple Point object
Let us consider a simple example of a Point object which describes a three-dimensional point
in space. A point can be described by three coordinates, typically its x,y,z location, this defines
how we wish to create a Point. Look at this first with the following partial definition.

public class Point { // (1)

private double xLoc, yLoc, zLoc; // (2)

public Point(double x, double y, double z) { // (3)
xLoc = x; // (4)
yLoc = y; // (5)
zLoc = z; // (6)

}

public Point() { // (7)

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -2

xLoc = 0.0; // (8)
yLoc = 0.0; // (9)
zLoc = 0.0; // (10)

}
<more to follow>

Consider the start of the definition of the Point object,

(1) Start of the definition of the class Point. Note the public keyword that means it can be
seen externally.

(2) Declares three internal double variables (note the private keyword). These variables
can only be see inside the class Point.

(3) Declares a constructor Point note the same name as the object. This takes three doubles,
being the location of the Point.

(4-6) Sets the internal variables to the values supplied in the argument list.

(7) Is an alternative, or overload constructor that takes no arguments. This creates a Point
at position 0,0,0. Note you can have an many overloaded constructors as you like1.

(8-10) Set the internal variables to zero.

So far this allows us to create a Point object, for example in our main program we can write,

Point location = new Point(2.5 , 4.5 , 7.0);
Point orgin = new Point();

which will create a Point object with coordinates 2.5,4.5,7.0 called location and a second
Point called origin at location 0,0,0. However this does not allow us do anything.
We now need methods to work with the object. Let’s first consider methods to return the x,y,z
location which are written as:

<definition>
public double getX() { // (1)

return xLoc; // (2)
}
public double getY() { // (3)

return yLoc; // (4)
}
public double getZ() { // (5)

return zLoc; // (6)
}

<more to follow>

which operate as:

(1) Define a method getX() which takes no arguments.
1Try adding a constructor to take two doubles, x and y, and sets the third coordinate z to zero.

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -3

(2) Return xLoc.

(3-6) Repeat for yLoc and zloc.

These methods allow, in our main program to write,

double xPosition = location.getX();
double yPosition = location.getY();
double zPosition = location.getZ();

where location is a Point as defined above. This allows us to read back the values of a
Point, still not very useful.
Note the syntax. The () are essential since .getX() is a method.
Aside: By convention methods that return the values is internal variables all start with get this
is not actually required, but is considered good JAVA programming practice. Such methods are
commonly referred to as “getters”.
Now lets as look as at a method to calculate the distance to the point from the origin which can
be written as,

public double fromOrigin(){
return Math.sqrt(xLoc*xLoc + yLoc*yLoc + zLoc*zLoc);

}

where since the method is defined within the class Point is has access to the private variables
xLoc, yLoc and zloc.
This method allow us to write

double distanceFromOrigin = location.fromOrigin();

again note that the final () are essential.
Things become more useful when we are able to pass a parameter to the method, for example
we wish to calculate the distance between two Points. This starts to introduce the real useful
power of this technique. We want a method that will allow us to write

Point first = new Point(1.0,1.0,1,0);
Point second = new Point(2,0,2,0,2.0);
double distanceBetweenPoints = first.distance(second);

so we have to define a method that takes a second Point as a parameter. above. The code for
such a method is:

public double distance(Point p) { // (1)
double xDelta = this.xLoc - p.xLoc; // (2)
double yDelta = this.yLoc - p.yLoc; // (3)
double zDelta = this.zLoc - p.zLoc; // (4)

return Math.sqrt(xDelta*xDelta+yDelta*yDelta +zDelta*zDelta); //(5)
}

Again look at this line by line,

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -4

(1) Declares a method called distance that takes a Point object as an argument and returns
a double.

(2) Declares a local double xDelta and sets it to the difference between the x coordinates
of the current Point, accessed by this.xLoc, and the Point passed as the parameter p,
accessed by p.xLoc.
Note the use of the this keyword to ensures we are referring to the variables associated
with the current point.

(3-4) Repeats (2) for the y and z coordinates.

(5) Return a double being the distance between the two Points.

Now lets declare our final method to add two Points together and return a new Point. This
method has to take a second Point as a parameters and then return a new Point. The code for
this is:

public Point add(Point p) { // (1)
double xNew = this.xLoc + p.xLoc; // (2)
double yNew = this.yLoc + p.yLoc; // (3)
double zNew = this.zLoc + p.zLoc; // (4)
return new Point(xNew,yNew,zNew); // (5)

}

Again line by line we have:

(1) Declare a method add that takes a Point as an argument and returns a Point.

(2-4) Declare three internal doubles which are the location parameter Point (p), added to the
current Point.

(5) Return a new Point which has the new coordinates just calculated.

This now allows us to write,

Point first = new Point(1.0,1.0,1,0);
Point second = new Point(2.0,1.0,-1.0);

Point third = first.add(second);

which is a much nicer, and more obvious, piece of code than having masses of x,y,z locations
in your main program.
Finally lets add a toString method to that return a formatted String containing the three
coordinates, being,

public String toString() {
return String.format("(%g,%g,%g)",

this.xLoc,this.yLoc,this.zLoc);
}

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -5

now the toString method is a one of the standard methods defined for all objects and is auto-
matically called when we try to convert an Object to a String. We have replaced (overloaded)
it for our Point object, so in put main program we can now write

.....
Point third = first.add(scond);
System.out.println("Value of third point is : " + third);

When the Point is added to the string, it is automatically converted using a toString() using
the method we have just written, and then concatenated, just as you would hope.
This simple example illustrated the basics of creating and using a new object and writing simple
methods to manipulate and operate on it. This is only the start of object oriented programming,
which will be expanded on in future courses, in particular the optional Computational Simula-
tion next term, or Computational Methods next year.

12.3 Putting it together
Due to the filename constraints in JAVA we have to be careful in putting this together. Remem-
ber that the filename must match the class is contains, so this means that the Point class must
be contained in a file called Point.java, while the class containing the main program must
be in a different file.
In this case we have two files Point.java that contains,

public class Point {

private double xLoc, yLoc, zLoc;

public Point(double x, double y, double z) {
xLoc = x;
yLoc = y;
zLoc = z;

}
<definition of the methods>
}

and the main program that uses Point, for example,

public class PointTest {
public static void main(String args[]){

Point first = new Point(2.0,4.0,6.0);
Point second = new Point(-1.0,3.0,-5.0);

System.out.println("Distance between first and second is :" +
first.distance(second));

<---- rest of code ---->
}

}

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

SCIENTIFIC PROGRAMMING -6

which must be in a file called PointTest.java. When you compile PointTest.java using
javac it will automatically look for a file called Point.java in your current directory which
it will also compile to give a Point.class file. Then when you run PointTest with java
PointTest is will automatically pick-up the code for the Point object, which is contained in
the Point.class file.
This is the most basic method of using objects, you will learn much more about managing
objects and packages in future courses.

12.4 Why bother with objects and classes
The first thing you notice when starting with objects is that you appear to write more code and it
is more complex than if you did it all in the main program. Yes, to start with this is true, but the
main program become massively simplified and if you define your objects carefully then they
can be re-used and extended them for use in other programs. This saves you time and effort
in the long run. More importantly the use of objects forces you to think in a structured way
and start breaking the task down into manageable chunks. You can then define, write and more
importantly test each object (and its associated methods) before you use them in your final main
program2. Most programmers spend in excess of 90% of their time testing and debugging, so
creating sensible objects in an object oriented programming language is actually a very efficient
method of working.
There are articles, books and complete courses on structured programming, and object oriented
programming, all of which are valid, however you only really learn and understand the power
of this technique by trying it out, seeing what works, making mistakes and finally starting to
think is the correct way; there is no substitute for sitting at the computer trying things out and
making it work!

Examples
Source code for the following on-line examples are available,

• Code for the Point object Point

• Code for the PointTest test program PointTest

What Next?

You are now ready to try the final, optional checkpoint for these people who started at check-
point 4 or for those people to are going on to the Computer Simulation course. In second part
of this checkpoint you should try and modify the object Point discussed above as detailed in
the checkpoint description.

2With large programs the different classes are ofter written by different programmers in a development team,
this scheme allows each programmer to concentrate on their piece of the code allowing them to fit it all together
at the end.

SESSION 2005/2006 VERSION 1.4, 27 AUGUST 2005

~wjh/teaching/Scientific-Programming/examples/oop/Point.java
~wjh/teaching/Scientific-Programming/examples/oop/PointTest.java

	Introduction to Objects
	The Basics
	A simple Point object
	Putting it together
	Why bother with objects and classes

