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Topic 3: Digital Representation and Sampling

Aim:
These two lectures cover the main theoretical background to representation, storage and sam-
pling of digital images.

Contents:

• Representation of a Digital Image

• Discrete Fourier Transform

• Properties of Discrete F.T.

• Sampling Theory

• Reconstruction & Interpolation

• Summary
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Digital Images

Real Space: Represented by a two-dimensional array of numbers by, sampling f (x,y) at points

x0+ i∆x, y0 + j∆y) where i & j = 0,1, . . . ,N−1

Where ∆x and ∆y are the x and y sampling intervals.

∆ x

∆ y

f(x,y)

Gives an N-by-N array of samples (numbers)

f (i, j) where i & j = 0,1, . . . ,N−1

which we will hold in a computer as a Two-Dimensional array.
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Digital Images I

For example:

Picture contains 1282 points.

The criteria for ∆x,∆y depends on the imaging system and will be covered later.
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Digital Images II

Fourier Space:
The two-dimensional Fourier Transform of f (x,y) is given by

F(u,v) =
Z Z

f (x,y) exp(−2πı(ux+uy)) dxdy

Similarly, F(u,v) can be sampled at intervals of ∆u and ∆v to give:

F(k, l) where k & l = 0,1, . . . ,N−1

where, it will be shown (in the next lectures), that for optimal sampling that:

∆u =
1

N∆x
and ∆v =

1
N∆y

In Fourier space the samples will be Complex, so we will not usually be able to sample F(k, l)
directly.
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Digital Images III

] If we have the relation between

f (i, j) ⇔ F(k, l)

we can calculate F(k, l) from f (i, j).

Normally display |F(k, l)|2.

which the DFT of the toucan.
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Discrete Fourier Transform

One Dimensions:
For a continuous function f (x) the Fourier Transform is:

F(u) =
Z

f (x)exp(−ı2πux)dx

where for the sampled function, f (i), with N samples, the Discrete Fourier Transform (DFT), is

F(k) =
N−1

∑
i=0

f (i)exp

[

−ı2π
ki
N

]

And the inverse DFT by:

f (i) =
1
N

N−1

∑
k=0

F(k)exp

[

ı2π
ki
N

]

by convention the 1/N is applied to inverse transform.
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Discrete Fourier Transform I

Two Dimensions:
Similarly in Two-Dimensions we have sampled image f (i, j), so that

F(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)exp

[

−ı2π
(

ki
N

+
l j
N

)]

and similarly the inverse is given by,

f (i, j) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

F(k, l)exp

[

ı2π
(

ki
N

+
l j
N

)]

again with the 1/N2 normalisation applied to the inverse only.

Note: We have assumed the images to be square. If not square same mathematics applies.

The image and its Fourier Transform are both of size N×N.
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Properties of One-Dimensional DFT

If the sampled function f (i) is Real Only , we can write

F(k) = FR(k)− ıFI(k)

where we have that

FR(k) =
N−1

∑
i=0

f (i)cos

[

−ı2π
ki
N

]

FI(k) =
N−1

∑
i=0

f (i)sin

[

−ı2π
ki
N

]

We have that

cos() → Symmetric Function

sin() → Anti-symmetric Function
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Properties of One-Dimensional DFT
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So that

FR(k) ⇒ Symmetric Function ⇒ FR(−k) = FR(k)
FI(k) ⇒ Anti-symmetric Function ⇒ FI(−k) = −FI(k)

Which is true for all Real inputs .
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Cyclic Properties
In addition F(k) is cyclic of period N, so that,

F(k±nN) = F(k)

since

exp

[

−ı2π
(k±nN)i

N

]

= exp

[

−ı2π
ki
N

]

So that k does not need to run from 0→ N−1, but any range of N sample specify F(k).

Noting that N is always even, Typically take

F(k) for k = −N
2 , . . . ,0. . . , N

2 −1

so:

0

0 1 2 3 54

1 2−1−2

F(k)

f(i)

N

N−2 N−1

− __N
2

N
2

−1__

This allow us to investigate the symmetry properties of F(k).
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Simple Example

Take N = 4, we have in Real Space, we have 4 samples,

f (i) for i = 0,1,2,3

and in Fourier space,

FR(k)+ ıFI(k) for k = −2,−1,0,1

which is 4 real components and 4 imaginary.

Real Part:

Fr(0) =
3

∑
i=0

f (i) = DC term

Fr(−1) = Fr(1) Symmetric property

FR(−2) = FR(2) cyclic of period 4

so we have only 3 independent Real parts, the other given by symmetry.
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Simple Example I

Imaginary Part:

FI(0) = 0 Since sin0= 0
FI(−1) = −Fi(1) Antisymmetric property

FI(−2) = 0 Since sinπ = 0

so we have only 1 independent Imaginary part, 1 given by symmetry, and 1 always being Zero.

So total of 4 independent values, 3 real and 1 imaginary.

So 4 samples in Real Space give 4 samples in Fourier Space.
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Bigger Example

Take N = 16, with an input function of:

 0
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The modulus of the Fourier Transform.
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F(k) for k = 0,1, . . . ,15 F(k) for k = −8, . . . ,0, . . . ,7
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Bigger Example I

The both ranges of the Fourier Transform contain the same values.

Both Fourier Transforms show the expected symmetry, but it is easier to see and understand in the
shifted version.

Note: we have not introduced negative frequencies, we have just shifted the DFT to make its
structure easier to understand and analyse.
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General Case

In the general case of a N point real function f (i), then it DFT, F(k) will have:

N
2

+1 Real Value

N
2
−1 Imaginary Values

Fi(0) = Fi(−N/2) = 0

giving a Total of N independent values in Fourier space with the other values given by symmetry
properties.

There is the same information in Real and Fourier space, so we expect the same number of values
in each.

Aside: Useful when calculating DFT, able to use the same storage for Real Space and Fourier
Space arrays.
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Properties of 2-Dimensional DFT

The N×N DFT is cyclic of period N, in both k and l direction,

F(k±nN, l ±mN) = F(k, l)

so we can shift the F(0,0) term in two dimensions to give,

F(k, l) for k& l = −N
2 , . . . ,0. . . , N

2 −1
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F(k,l)

(0,0) (N−1,0)

(0,N−1) (N−1,N−1)

F(k,l)

(N/2−1,N/2−1)(−N/2, N/2−1)

(−N/2,−N/2) (N/2−1 , −N/2)

Shifted 

(0,0)
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Properties of 2-Dimensional DFT I

This allows us to have the F(0,0) to appear at the centre of the Fourier array.

Aside: The |F(u,v)|2 is identical to the Optical Diffraction pattern. Usually displayed with the bright
centre in the middle.
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Two-Dimensional Symmetry

For a real input image f (i, j) again we can write the Fourier Transform

F(k, l) = FR(k, l)− ıFI(k, l)

where, after some effort, we get that:

FR(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)

[

cos

(

2π
ik
N

)

cos

(

2π
jl
N

)

+sin

(

2π
ik
N

)

sin

(

2π
jl
N

)]

and that

FI(k, l) =
N−1

∑
i=0

N−1

∑
j=0

f (i, j)

[

cos

(

2π
ik
N

)

sin

(

2π
jl
N

)

+sin

(

2π
ik
N

)

cos

(

2π
jl
N

)]

Again noting that

cos() → Symmetric Function

sin() → Anti-symmetric Function
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Two-Dimensional Symmetry
These have Point symmetry properties about the centre, being

(−k,−l) (0,−l) (k,−l)

(0,l) (k,l)

(k,0)(−k,0)

(−k,l)

When can be written as:

FR(k, l) = FR(−k,−l)
FR(−k, l) = FR(k,−l)

FI(k, l) = −FI(−k,−l)
FI(−k, l) = −FI(k,−l)

The major problem is that N is almost always even which complicates the symmetry at the edge
of the Fourier Plane.
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Simple Example in 2-D

Again take the simple case of a 4×4 image f (i, j),

Real Part Imaginary Part

−2 −1 0 1

−1

0

1

−2

1,0

−2,−2−1,−2 0,−2 1,−2

−2,−1

−2,0

−2,1

−1,0 0,0

1,1

1,−10,−1−1,−1

0,1−1,1

k =

l =

����
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����
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����

−2 −1 0 1

−1

0

1

−2

����
����
����
����
����

����
����
����
����
����

1,0

−1,−2 1,−2

−2,−1

−2,1

−1,0

1,1

1,−10,−1−1,−1

0,1−1,1

k =

l =

10 Real Values 6 Imaginary Values

Giving 10 real values and 6 imaginary values, a total of 16.
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General Two-Dimensional Case

In the general case for the DFT of an N×N point real image,

N2

2
+2 → Real Values

N2

2
−2 → Imaginary Values

giving a Total of N2 independent values in the Fourier plane.

Again as you would expect, since N2 values in Real Space give rise to N2 values in Fourier Space.

Able to reuse image space in program, important of N is large.
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Calculation of Two Dimensional DFT

The exponential term is separable, then the Two Dimensional DFT can be implemented in two
parts.

F(k, l) =
N−1

∑
j=0

P(k, j)exp

(

−ı2π
l j
N

)

where

P(k, j) =
N−1

∑
i=0

f (i, j)exp

(

−ı2π
ki
N

)

F{}

F{}

P(k,j) F(k,l)f(i,j)
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Calculation of Two Dimensional DFT

1. N 1-D DFTs “along-the-rows”

2. N 1-D DFTs “down-the-columns”

So we can implement the Two Dimensional DFT, by a series of 2N One Dimensional DFTs.

Extend the same argument to Three-Dimensions, where for N×N×N which we can again break
into one-dimensional DFTs
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Calculation of DFT

The 2-D DFT can be calculated from 2N 1-D DFT of the type,

F(k) =
N−1

∑
i=0

f (i)exp

[

−ı2π
ki
N

]

Computational complexity proportional to N2.

Typically calculated by FFT algorithm which has a computational complexity proportional to N log2(N).

Restrictions on N:

• Original algorithm: N = 2n only. Radix 2 DFT

• Typical algorithm: N = 2n+13m5p Mixed Radix DFT

• FFTW: gives N log2(N) for any N using highly optimised code.

The 1-D FFT is a non-trivial algorithm, use a standard piece of code and don’t try and write one.

Aside: Good Two-Dimensional codes do not use the single 1-D technique. Exploit symmetry of
2-D system able to make additional 10-15% computational saving.
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Practical Considerations

Dynamic Range:

• Most input images f (i, j) in range 0→ 255(8-bit)

• DFT is Complex, with range typically 1012

Must use Floating Point arithmetic to calculate DFT. (Slows it down considerable).

Typically display:

log
(

|F(k, l)|2+1
)
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Practical Considerations

Location of Centre:

Most algorithms locate F(0,0) at top/left.

Shift to centre by Convolution of DFT with

δ
(

i−
N
2

, j −
N
2

)

Use Convolution Theorem, so “Multiply in real space”, with “checker pattern”

1 −1 1 . . . −1
−1 1 −1 . . . 1
1 −1 1 . . . −1
... ... ... . . . ...

−1 1 −1 . . . 1

This is much faster than direct shift.
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Sampling Theory

Before we can sample an image we must what,

∆x and ∆y

should we use to retain the information in f (x,y).

We find it depends on the maximum spatial frequency in the image.

Shannon Sampling Theory

If function f (x) has Fourier Transform of width a, so that:

F(u) = 0 for |u| > a/2

then f (x) completely specified by samples at

∆x =
1
a

Note: No limit or range of f (x), will in general be infinite.

We now need to understand what this means?
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Sampling Property of δ-function

We have from properties of δ(x), that for function f (x), then
Z ∞

−∞
f (x) δ(x−a)dx = f (a)

f(x)
f(a)

xa0

so that convolution with a shifted δ(x) at position x = a measures or samples the function at x = a
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Sampling Function

Define a sampling function as a

s(x) =
∞

∑
i=−∞

δ(x− i∆x)

Which is a Comb of δ-function,

−2 −1 0 1 2 3

∆ x

so the sampled function is given by

f (x) s(x)

So in Fourier space we get a convolution of,

F(u) ⊙ S(u)

where S(u) is the Fourier Transform of the Comb.
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Sampling Function

It-can-be-shown (see Tutorial 7 of Fourier Transform Booklet) that this is comb is reciprocal spacing,
given by:

S(u) =
∞

∑
i=−∞

δ(u−
i

∆x
)

Now consider the affect of this on sampling.
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One Dimensional Example
Take a One Dimensional function:

0 4321 5
ι

x

f(x) s(x) f(i)

x x

X =

∆

Then in Fourier space we have

∆1/     x ∆1/     x

F(u) S(u)

a
u u

a

F(u)     S(u)o.

which will be separated ONLY if

a≤
1

∆x
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Implications for Sampling

Three possible conditions:

Understampling: Sample less-often than required.

∆x >
1
a

Overlap

F(u)

ua

1/    x∆

Overlap in Fourier Space. Information lost (Known as aliasing).
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Implications for Sampling I

Shannon Sampling: Exactly what is required.

∆x =
1
a

F(u)

a

1/    x∆

u
a a

No overlap of orders in Fourier Space. Each replication is just Fourier Transform or unsampled
input. Able to extract all information about original input.
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Implications for Sampling I

Oversampling: More often than is required.

∆x <
1
a

BlankBlank

F(u)

a

∆1/    x

u
a a

Orders on Fourier Space well separated. No added information about f (x), but have more samples
to deal with.

Aside: This assume that there is no noise on the signal. If noise some improvement possible with
oversampling.

Details of this beyond this course.
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Sampling in Two Dimensions
Here we have a two dimensional function f (x,y)

Define a 2-D sampling function,

s(x,y) =
∞

∑
i=−∞

∞

∑
j=−∞

δ(x− i∆x, y− j∆y)

Grid of δ-functions with separation ∆x, ∆y.

In real space we have

f (i, j) = f (x,y) s(x,y)

so in Fourier plane we get:

F(u,v)⊙S(u,v)

where we have that

S(u,v) =
∞

∑
i=−∞

∞

∑
j=−∞

δ
(

u−
i

∆x
, v−

j
∆y

)

Then if F(u,v) is rectangular of size a×b Shannon Sampling Rate is given by,

∆x =
1
a

∆y =
1
b

Typically take ∆x = ∆y.
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Two Dimensional Example
In two-dimensions we have

f(x,y) s(x,y) f(i,j)

Then in Fourier space we have

S(u,v)

∆1/   x ∆1/   y

∆1/   x

∆1/   y

a

F(u,v)
v

u

b

a

b

∆x <
1
a

∆y <
1
b
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Functions of Finite Extent
Take the more practical case a finite function f̃ (x) being

f̃ (x) = f (x) w(x)

where

w(x) = Π
( x

2d

)

so that f̃ (x) is of width d.

f(x)

w(x)

x
d/2−d/2 0

Multiplication in Real space, so in Fourier space,

F̃(u) = F(u)⊙W(u)

where

W(u) = sinc(πdu)
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Functions of Finite Extent I

But sinc() is infinite in extent.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20  0  20  40

Looks like a massive problem:

W(u) infinite in extend =⇒ F̃(u,v) infinite in extend

so width in Fourier space a→ ∞ so that

∆x =
1
a
→ 0

so sample point become infinitely close together!
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Functions of Finite Extent II

Often possible to assume that finite functions obey Shannon Sampling (True if d is large).

W(u) = sinc(πdu)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20  0  20  40

is Sharply peaked with first zeros at ±1/d.
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Functions of Finite Extent III

Note that d is the length of the signal sampled, so if the sampling rate is ∆x then

d = N∆x

so if N large, (take a lot of samples), then we can assume Shannon Sampling, where

∆x =
1
a

where a is the width of the Fourier Transform of the unwindowed function f (x).
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Sampling Rate in Real and Fourier Space
Real Space:
Function f (x) has bandwidth a, so that

F(u) = 0 for |u| > a/2

then Shannon Sampling rate as:

∆x =
1
a

If in real space we take N samples, then window length is length N∆x, so that

d = N∆x

Fourier Space:
Sample function F̃(u) in Fourier Space. In real space we have function of width d

f̃ (x) = f (x) w(x) = 0 for |x| > d/2

so we define a Shannon Sampling rate in Fourier space is

∆u =
1
d

=
1

N∆x
So for a function sampled at a rate ∆x is real space, the equivalent sampling is Fourier space is

∆u = 1
N∆x
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Sampling Rate in Two Dimensions

Identical in Two-Dimensions, with

∆u =
1

N∆x
& ∆v =

1
N∆y

Note we assume that the sampled image is Square, if not different sampling frequency in each
direction.
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Example Ideal Imaging System

For ideal optical system we have FT limited by H(w) (OTF), where

H(u,v) =
2
π



cos−1
(

w
v0

)

−
w
v0

(

1−

(

w
v0

)2
)

1
2





-100
-50

 0
 50

 100-100
-50

 0
 50

 100
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

where

v0 =
d

λ f
=

1
λFNo

so that

H(w) = 0 for |w| > v0

with the FT contained in a square of 2v0×2v0.
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Example Ideal Imaging System I

Sampling Interval given by,

∆x = ∆y =
1

2v0
=

λFNo

2
So for

• λ = 0.5µm (Green Light)

• FNo = 8 (Medium aperture)

• Then ∆x = 2µm.

So for 35mm negative (36 by 24mm) need 18000 by 12000 samples.

In practice film grain reduces sampling requirement to about 5µm.

Vast amount of data. Do not usually need to consider all the data.
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Reconstruction from Sampled Data

Inverse problem or recover of f (x) from sampled version f (i) samples at ∆x.

The sampled signal f (i) is given by

f (i) = f (x) s(x) = F −1{F(u)⊙S(u)}

0 1 2 3 4 5 i

x

f(i)

∆

H(u)
f(i)F{       }

1/    x∆

1/    x∆

In Fourier space F(u)⊙S(u) is periodic with period 1/∆x. We can isolate a single period by a filter

H(u) = Π
( u

∆x

)
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Reconstruction from Sampled Data I

So that

(F(u)⊙S(u)) H(u) = F(u)

which in real space we have that

f (x) = h(x)⊙ ( f (x)s(x)) = h(x)⊙ f (i)

where

h(x) =
1

∆x
sinc

(πx
∆x

)

which is known as the interpolation function.

Typically we normalise to get,

h(x) = sinc
(πx

∆x

)

known as ideal interpolation function.

A
PP

LIED OPTICS GROU
P

D
E

PA

RTMENT of PHYSI
C

S Digital Sampling -46- Semester 1



DIA/TOIP T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Reconstruction from Sampled Data I

4 530 1 2

10 2 3 4 5 i

f(x)

f(i) h(x)
1.0

x∆ ∆ x
x

Note: that when x = n∆x then f (x) is value of sample at that point.

Problem: if x 6= n∆x requires the sinc() to be convolved with all other points. Not computationally
practical so approximations must be made.
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Zeroth Order Interpolation
Simplest interpolation nearest neighbour rule,

h(x) = Π
( x

∆x

)

0

10 2 3 4 5 i 0 21 3 4 5

x
x

x

x x

f(i) f(x)

∆ ∆

∆
h  (x)

Typical Stair-Case effect. Convolution in real space, so Multiplication in Fourier space by

H(u) = sinc(π∆xu)

which attenuates high frequencies and aliasing effects from periodic orders

0

Aliasing

Low pass

Replicated Orders

u
∆1/    x

H  (u)

F(u)
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Zero Order in Two Dimensions

We get two dimensional interpolation function,

h(x,y) = Π
( x

∆x

)

Π
(

y
∆y

)

which we can interperate at closest values to (x,y), or

f (x,y) = f (i, j) for |x− i∆x| and |y− j∆y| minimised

Typical Block structure and replications in Fourier Space.

Zero−order expanded

Original

Fourier Transform

Aliased (spurious) information

Low pass of original
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First Order Interpolation

Here we have that

h(x) = 1− |x|
∆x for |x| ≤ ∆x

= 0 else

0 1 2 3 4 5 i

x x

x0 543210

xh(x) f(x)
f(i)

∆ ∆

∆

which in Fourier space gives,

H(u) = sinc2(π∆xu)
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First Order Interpolation I

Less high frequency attenuation and aliasing effects that zero order

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

sinc(x)
sinc2(x)

Linear interpolation between the two points adjacent to the required position x.

i = int
( x

∆x

)

and α =
x− i∆x

∆x
Then we have that

f (x) = (1−α) f (i)+α f (i +1)

Need to consider two sample points for each value of x.
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First Order in Two Dimensions

In two dimensions the interpolation function becomes,

h(x,y) =

(

1−
|x|
∆x

)(

1−
|y|
∆y

)

which can be implemented as the weighted average of four adjacent points. If we take :

i = int
( x

∆x

)

& j = int

(

y
∆y

)

and

α =
x− i∆x

∆x
& β =

y− j∆y
∆y

then we have that

f (x,y) = (1−α)(1−β) f (i, j)+α(1−β) f (i +1, j)+

(1−α)β f (i, j +1)+αβ f (i +1, j +1)

so we have to access four points for each x,y value.
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First Order in Two Dimensions

In diagram form we have

∆ x

∆ y
α

β
∆

∆
x

y

f(i,j) f(i+1,j)

f(i+1,j+1)f(i,j+1)

f(x,y)

With real examples being

Original

Fourier TransformFirst−order expanded

Aliased (spurious) information

Low pass of original
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Other Interpolation Techniques

Range of other functions h(x) based on Gaussians and limited range sinc()s. In general the larger
the window over which the interpolation is formed be better the reconstruction.

Most common higher order scheme is Bicubic , weighted average over 4×4 region. Used exten-
sively in digital photography.
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Summary

In this section we cane considered

1. Digital representation of images in real and Fourier space.

2. The discrete Fourier transform and its properties in one and two dimensions.

3. Calculation of the discrete Fourier transform by the FFT

4. Sampling theory in one and two dimensions from a Fourier viewpoint.

5. Limitations of the sampling theorem and its practical application.

6. Reconstruction from sampled and the ideal interpolation function.

7. Zero and First order interpolation and their effects in real and Fourier space.

8. Outline of higher order interpolation schemes.
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