Topic 3: Digital Sampling
 Workshop Solutions

Workshop Questions

3.1 Two-dimensional Symmetry

Show that the DFT of a two-dimensional real function has the symmetry properties of

$$
\begin{aligned}
F_{R}(k, l) & =F_{R}(-k,-l) \\
F_{R}(-k, l) & =F_{R}(k,-l) \\
F_{I}(k, l) & =-F_{I}(-k,-l) \\
F_{I}(-k, l) & =-F_{I}(k,-l)
\end{aligned}
$$

Solution

The two-dimensional DFT is given by

$$
F(k, l)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j) \exp \left(-l 2 \pi\left(\frac{k i}{N}+\frac{l j}{N}\right)\right)
$$

which can be written as:

$$
F(k, l)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j) \exp \left(-\imath 2 \pi \frac{k i}{N}\right) \exp \left(-\imath 2 \pi \frac{l j}{N}\right)
$$

which can then be expanded in terms of $\cos ()$ and $\sin ()$ to give

$$
F(k, l)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j)\left(\cos \left(2 \pi \frac{k i}{N}\right)-\imath \sin \left(2 \pi \frac{k i}{N}\right)\right)\left(\cos \left(2 \pi \frac{l j}{N}\right)-\imath \sin \left(2 \pi \frac{l j}{N}\right)\right)
$$

Now if $f(i, j)$ is real we can collect real and imaginary parts together to give

$$
F(k, l)=F_{R}(k, l)+\imath F_{I}(k, l)
$$

where

$$
F_{R}(k, l)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j)\left(\cos \left(2 \pi \frac{k i}{N}\right) \cos \left(2 \pi \frac{l j}{N}\right)-\sin \left(2 \pi \frac{k i}{N}\right) \sin \left(2 \pi \frac{l j}{N}\right)\right)
$$

and

$$
F_{I}(k, l)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i, j)\left(\cos \left(2 \pi \frac{k i}{N}\right) \sin \left(2 \pi \frac{l j}{N}\right)+\cos \left(2 \pi \frac{l j}{N}\right) \sin \left(2 \pi \frac{k i}{N}\right)\right)
$$

The symmetry relation is given by the $\cos ()$ and $\sin ()$ functions. Substitute,

$$
a=2 \pi \frac{k i}{N} \quad \& \quad b=2 \pi \frac{l j}{N}
$$

so the symmetry for the real part is given by:

$$
\cos (a) \cos (b)-\sin (a) \sin (b)
$$

so that, noting that $\cos (a)=\cos (-a)$ and $\sin (a)=-\sin (-a)$,

$$
F_{R}(a, b)=F_{R}(-a,-b) \quad \& \quad F_{R}(-a, b)=F_{R}(a,-b)
$$

and the imaginary part by:

$$
\cos (a) \sin (b)+\sin (a) \cos (b)
$$

so that:

$$
F_{I}(a, b)=-F_{I}(-a,-b) \quad \& \quad F_{I}(-a, b)=-F_{I}(a,-b)
$$

as expected.

3.2 Symmetry Pairing

Verify for a 6×6 image that the DFT of a two-dimensional real function has:

$$
\begin{array}{ll}
\frac{N^{2}}{2}+2 & \text { Independent real values } \\
\frac{N^{2}}{2}-2 & \text { Independent imaginary values }
\end{array}
$$

Fourier filters involve multiplying the DFT by a filtering function $H(i, j)$. Many of these filters are real only. Suggest a scheme for packing the real and imaginary parts of a DFT into a square array that makes multiplication with such a filter simple.

Solution

First renumber the Fourier array so that the $(k: l=-3, \rightarrow, 2)$ which can be done due to the cyclic properties of the DFT. There are now 2 arrays of 36 element, one for the real parts and one form the imaginary parts as shown below.

Real Part: is symmetric. Consider three regions of the output place, shaded grey, black \& white above.

1. grey: There are 24 points where the symmetric symmetry is simple: eg: $F_{R}(1,2)=$ $F_{R}(-1,-2)$. So in this regions there are $\mathbf{1 2}$ unique values with the other 12 given by symmetry.
2. black: There are 4 points with no symmetric pair, actually due to the cylcic properties they are their own symmetric pair. This gives $\mathbf{4}$ uniques values.
3. white: There are 8 points in 4 symmetric pairs but they are wrapped round due to cyclic property. For example $F_{R}(-3,2)=F_{R}(3,-2)$ but $F_{R}(3,-2)$ is cyclic with period 6 , so that $F_{R}(3,-2)=F_{R}(-3,-2)$. This region gives 4 uniques values with the other 4 given by symmetry.

This gives total of:

Area	Number
grey	12
black	4
white	4
Total	$\mathbf{2 0}$

Imaginary Part: is anit-symmetric. Consider same three regions,

1. grey: As for real there are 24 points where symmetry is simple: eg: $F_{I}(1,2)=-F_{I}(-1,-2)$.

So in this regions there are $\mathbf{1 2}$ unique values with the other 12 given by symmetry.
2. black: There are 4 points where all terms in the expression for the imaginary componets contain $\sin (\pm n \pi)=0$. So all these 4 points are always zero and to not depend on $f(i, j)$ This area contributes $\mathbf{0}$ values.
3. white: There are 8 points in 4 symmetric pairs but they are wrapped round due to cyclic property. This region gives 4 uniques values with the other 4 given by symmetry.

This gives total of:

Area	Number
grey	12
black	0
white	4
Total	$\mathbf{1 6}$

So as noted we have

$$
\begin{aligned}
& \frac{N^{2}}{2}+2=20 \quad \text { Real Values } \\
& \frac{N^{2}}{2}-2=16 \quad \text { Imaginary Values }
\end{aligned}
$$

There are 36 values that can be "packed" into a single 6×6 float array. This was shown for $N=4$ in lectures, $N=6$ here, and can (easily) be extended to any even N.
If we want to apply a real filter $H(k, l)$ then we need to multiply both the real and imaginary parts by the same filter to give:

$$
G_{R}(k, l)=F_{R}(k, l) H(k, l) \quad \& \quad G_{I}(k, l)=F_{I}(k, l) H(k, l)
$$

we can then inverse transform to give the filtered image. (For details of filter types see lecture 8). In order to preserve the symmetry of $G(k, l)$ the filter $H(k, l)$ must be symmetric. If we then pack the Fourier image data $F(k, l)$ as shown on left, with the

1. Real Symmetric part in the Dark Grey region.
2. Imaginary Anti-symmetric part in the Light Grey region.
3. Additional 4 Real Values in the Black regions.

Then if we apply a symmetric filter, as shown on the right, then the apperant multiplication reduced to a $N \times N$ real multiplication with the "top" half of the filter multiplying the real section and the "bottom" half the imaginary section.

3.3 Shifting The Centre

Show that if your two dimensional DFT code locates the $(0,0)$ term in the top/left of the array, then this can be shifted to the centre of the array by pre-multiplying the by a ± 1 checker-board.

Solution

Want to shift the top-left pixel to the centre of $N \times N$ array which occurs at ($N / 2, N / 2$). Mathematically a shift can be implemented as a convolution with a shifted δ-function, so we want to form:

$$
F(k, l) \odot \delta\left(k-\frac{N}{2}, l-\frac{N}{2}\right)
$$

(Note that we want cyclic wrap-round so that sections of $F(i, j)$ with $i, j>N / 2$ will wrap-round to the $i, j<N / 2$ sections. This will occur automatically due to the cyclic property of the DFT.) The convolution in Fourier Space is equivalent to a multiplication in Real space of

$$
f(i, j) \mathcal{F}\left\{\delta\left(k-\frac{N}{2}, l-\frac{N}{2}\right)\right\}
$$

We have to take the DFT, so

$$
\mathcal{F}\{\delta(k-a)\}=\frac{1}{N} \sum_{i=0}^{N-1} \delta(k-a) \exp \left(-\imath 2 \pi \frac{i k}{N}\right)=\frac{1}{N} \exp \left(-\imath 2 \pi \frac{a i}{N}\right)
$$

so in two dimensions we have that:

$$
\mathcal{F}\left\{\delta\left(k-\frac{N}{2}, l-\frac{N}{2}\right)\right\}=\frac{1}{N^{2}} \exp (\imath \pi(i+j))
$$

Ignoring the $1 / N^{2}$ term, we note that

$$
\begin{aligned}
\exp (\imath \pi(i+j)) & =1 \quad \text { when }(i+j) \text { Even } \\
& =-1 \quad \text { when }(i+j) \text { Odd }
\end{aligned}
$$

so for N even we have to multiply the function $f(i, j)$ by

1	-1	1	\cdots	-1
-1	1	-1	\cdots	1
\vdots	\vdots	\vdots	\ddots	\vdots
1	-1	1	\cdots	-1
-1	1	-1	\cdots	1

3.4 Speed of the FFT

On a particular computer system the FFT of a 128×128 image takes 0.11 seconds, estimate how long this system would take to calculate the FFT of a 1024×1024 image.

Solution

For a one-dimensional FFT the computational cost is proportional to $N \log _{2}(N)$. The twodimensional DFT can be formulated at $2 N$ one-dimensional FFT (N along the rows, plus N down the columns). The computational cost for the FFT of an $N \times N$ array is therefore

$$
\propto N^{2} \log _{2}(N)
$$

If it takes 0.11 secs for $N=128$ then for $N=1024$ is will take

$$
\frac{1024^{2} \log _{2}(1024)}{128^{2} \log _{2}(128)} \times 0.11=10.05 \mathrm{secs}
$$

Real experimental values for $N=2^{n}$ are:

Size	Time in secs.
64	0.02
128	0.11
256	0.46
512	2.31
1024	9.55

which is very close to the predicted timings. Experimental timings for various N consisting of powers or $2 \& 3$ from $64 \rightarrow 1024$ are shown in the graph below.

The best fit of $N^{2} \log _{2}(N)$ is also plotted. The $N=2^{n}$ points are all below the curve while the values of N containing 3(s) are above the line. This shows that this algorithm is optimally efficient for powers-of-two.
Timings for larger N showed very significant deviation for expected $N^{2} \log _{2}(N)$ relation due to size of physical memory, for example a 2048×2048 DFT took 20 minutes.

3.5 CCD Sensors

A CCD sensor is a two-dimensional array of detectors that can be used to sample an image. A typical TV quality CCD camera will have 586×768 sensors on a 15 by 20 mm area with a $3: 4$. Calculate the size of the sensors and the maximum spatial frequency in the detected image.
You wish to use this CCD camera to image pages of text for a character recognition system that is able to easily resolved 8 pt (1 pt is $1 / 72 \mathrm{nd}$ of an inch) letters. What magnification is required and how large a page of text can be images at once.
Hint: To easily resolve a letter you must be able to resolve line approximately 5 times closer together than the minimum separation of lines in the letter.

Solution

Video images have a 4:3 aspect ratio due to the shape of the normal TV screen. The sensor sizes are simply

$$
\frac{15}{586}=25.6 \mu \mathrm{~m} \quad \frac{20}{768}=26.0 \mu \mathrm{~m}
$$

so, for all practical purposes, they are square.
Shannon sampling rate is that the signal is optimally sampled with sampling interval Δx if

$$
\Delta x=\frac{1}{W}
$$

where W is the "bandwidth" of the signal.

The maximum spatial frequency is thus half the bandwidth, so that

$$
w_{0}=\frac{1}{2} W=\frac{1}{2 \Delta x}
$$

so the maximum spatial frequencies are, u_{0}, v_{0},

$$
u_{0}=19.2 \text { lines } / \mathrm{mm} \quad \& \quad v_{0}=19.5 \text { lines } / \mathrm{mm}
$$

Letter in an 8 pt font are approximately 2.8 mm high. This is typically the smallest font that appears in printed documents.

The typical lines in the letter are about $1 / 5$ th of the letter's height, but to "easily" resolve the letter we must be able to resolve lines about 5 times closer together than that so we must resolve lines with a separation of

$$
\frac{2.8}{25}=112 \mu \mathrm{~m}
$$

which is equivalent to spatial frequency of:

$$
\text { 8.93lines } / \mathrm{mm}
$$

The CCD sensor has a maximum spatial frequency resolution of approximately 19 lines $/ \mathrm{mm}$, so the magnification between object and image plane is given by

$$
\frac{8.93}{19.2}=0.46
$$

in other words the imaged area of the page is approximately $\times 2.15$ the size of the sensor, so the size of the imaged "page" is approximately,

$$
43 \times 32 \mathrm{~mm}
$$

which is only a small section of a page. In a typical book an area of this size contains about 45 words.
This calculation shows that optical character recognition requires a vast amount of data to be processed. Real character recognition systems do not use video cameras by a linear sensor array the width of the paper.

