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Topic 3: Digital Sampling

3.1 Digital Representation of Images
To represent an continuous image in a digital for it must be sampled, or measured, at regular
intervals to form a two-dimensional array of numbers being the intensity at the sampled points
as shown in figure 1.

∆ x

∆ y

f(x,y)

Figure 1: Sampled region of a continuous image.

For an image f (x,y), if the top/left is located at (x0,y0) then if we take N ×N samples, these
are located at,

(x0 + i∆x , y0 + j∆y) where i & j = 0,1, . . . ,N −1

where ∆x and ∆y are the x and y sampling intervals. This gives N ×N array of samples, or
numbers,

f (i, j) where i & j = 0,1, . . . ,N −1

which we will hold in a computer as a two-dimensional array with each sampled point being
known as a pixel. A typical digital image is shown in figure 2 (a), being a 128× 1281 pixel
image.

(a) (b)

Figure 2: (a) A typical 128× 128 pixel monochrome image, and (b) the digital Fourier trans-
form of the same image.

1The use of the rather odd number 128 will be explained shortly.
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Clearly if the sampling distance (∆x,∆y) is sufficiency small and so there are a sufficiently large
number of pixels, we will get an accurate representation of the original image. We will consider
way we mean by an accurate representation and develop a criteria for the sampling intervals
later on in this section.
The two-dimensional Fourier transform of the image f (x,y) is given by

F(u,v) =
Z Z

f (x,y) exp(−2πı(ux+uy)) dxdy

Similarly, the Fourier transform F(u,v) can be sampled at intervals of ∆u and ∆v to give a
two-dimensional array of

F(k, l) where k & l = 0,1, . . . ,N −1

where, it will be shown2, that for optimal sampling we have that

∆u =
1

N∆x and ∆v =
1

N∆y (1)

In Fourier space the samples will be complex, so we will not usually be able to view F(k, l)
directly, but it is more typical to display |F(k, l)|2 as shown in figure 2 (b). We will also shortly
be shown the relation between

f (i, j) ⇔ F(k, l)
so allowing us to numerically calculate F(k, l) from f (i, j).

3.2 Discrete Fourier Transform
In one-dimensions, if we have a continuous function f (x) then its Fourier Transform is given
by,

F(u) =
Z

f (x) exp(−ı2πux)dx

If we have a sampled function , f (i), with N samples, the we can define is Discrete Fourier
Transform (DFT), as begin given by:

F(k) =
N−1
∑
i=0

f (i) exp
(

−ı2π
ki
N

)

and the inverse Discrete Fourier Transform being given by

f (i) =
1
N

N−1
∑
k=0

F(k) exp
(

ı2π
ki
N

)

where, by convention, the normalisation by 1/N is applied to the inverse transform3.
Similarly in two dimensions, for a continuous function f (x,y) its Fourier transform is given by

F(u,v) =
Z Z

f (x,y) exp(−ı2π(ux+ vy)) dxdy

2later in this section.
3The DFT can also be defined with 1/

√
N normalisation on both forward and inverse transforms.
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If we sample this function on a regular grid of N×N samples, we get a sampled function f (i, j),
then the two-dimensional Discrete Fourier Transform is given by,

F(k, l) =
N−1
∑
i=0

N−1
∑
j=0

f (i, j) exp
(

−ı2π
(

ki
N +

l j
N

))

(2)

and similarly the inverse Discrete Fourier Transform being given by,

f (i, j) =
1

N2

N−1
∑
i=0

N−1
∑
j=0

F(k, l) exp
(

ı2π
(

ki
N +

l j
N

))

(3)

where we have assumed that the sampled image is square4 and we have applied the normalisa-
tion to the inverse tranform only.
The gives the numerical relation between f (i, j) and F(k, l), but not the relation between the
sampling rate in the two spaces. This will be considered after some of the properties of Discrete
Fourier Transform.

3.3 Properties of the DFT
The DFT, being the discrete version of the continuous Fourier transform exhibits all the prop-
erties detailed in the accompanying booklet5, but we need to consider some of the particular
properties of the discrete version. Consider fist a one-dimensional sampled function f (i), where
the samples are Real Only, then we can write

F(k) = FR(k)− ıFI(k)
where we have that

FR(k) =
N−1
∑
i=0

f (i) cos
(

−ı2π
ki
N

)

FI(k) =
N−1
∑
i=0

f (i )sin
(

−ı2π
ki
N

)

As shown in figure 3, cos() is a symmetric function while sin() is a anti-symmetric function,
so since FR() and FI() are summations of cos() and sin() respectively, they while also display
the same symmetries, so that

FR(k) ⇒ Symmetric Function ⇒ FR(−k) = FR(k)
FI(k) ⇒ Anti-symmetric Function ⇒ FI(−k) = −FI(k)

If we consider the exp() part of the expression for the one-dimensional DFT we also see that,

exp
(

−ı2π
(k±nN)i

N

)

= exp
(

−ı2π
ki
N

)

4If the image is rectangular of size M ×N, all the formulas stall apply, but it makes the interpretation rather
more complex.

5The Fourier Transform (what you need to know)
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Figure 3: Symmetry properties of(a) cos() and (b) sin() functions

which implies that F(k) is cyclic of period N, so that

F(k±nN) = F(k)

So that k does not need to run from 0 → N − 1, but any range of N consecutive sample fully
specify specify F(k), so noting that N is always even6, then we can typically take F(k) specified
over the range,

F(k) for k = −N
2 , . . . ,0 . . . , N

2 −1
as shown in figure 4.

0

0 1 2 3 54

1 2−1−2

F(k)

f(i)

N

N−2 N−1

−__N
2

N
2

−1__

Figure 4: Range of a one-dimensional DFT.

Now consider the symmetry conditions, initially wit a simple example where N = 4, so we have
four samples, being

f (i) for i = 0,1,2,3
so in Fourier space we have

FR(k)− ıFI(k) for k = −2,−1,0,1

which consists of 4 real components and 4 imaginary components, which initially looks as if
we have doubled the amount of data. However look at this in detail and we see that for the real
component we have,

FR(0) = ∑3
i=0 f (i) The DC term

FR(−1) = FR(1) Symmetric property
FR(−2) = FR(2) cyclic of period 4

6Requirement for the calculation of the DFT by the FFT algorithm, see below
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so we have three of the real components that depend on f (i) and the one that is given by the
symmetry condition. For the imaginary component we similarly have that,

FI(0) = 0 Since sin0 = 0
FI(−1) = −FI(1) Antisymmetric property
FI(−2) = 0 Since sinπ = 0

so here we have only one of the imaginary component depending on f (i), one given by the anti-
symmetry, and the other two always being zero. This gives a total of 4 components in Fourier
space that depend on the input data with the other 4 being given by the symmetry properties7.
If we consider a larger example with 16 data points, where f (i) is shown in figure 5. The
modulus of F(k) is shown in figure 6, with (a) with k over the range 0 → 15 and (b) over the
range −8 → 7. Both Fourier Transforms show the expected symmetry, but it is easier to see
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Figure 5: A 16 point input data samples.

and understand in the shifted version.
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Figure 6: Modulus of the Fourier transform with (a) range 0 → 15 and (b) range −8 → 7.

We can extend this to the general case of a N point real function f (i), then its Discrete Fourier
Transform, F(k) will have:

N
2 +1 Real Value that depend on f (i)

7The Fourier transform is unitary, so we expect the same number of values in each space.
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N
2 −1 Imaginary Values depend of f (i)

FI(0) = FI(−N/2) = 0

giving a total of N independent values in Fourier space with the other values given by symmetry
properties. So there is the same number of data point in both real and Fourier space. This is
useful when calculating DFT, allowing to use the same storage for real and Fourier space arrays.

Properties of the two-dimensional DFT

In two-dimensions things are little more complicated but follows the same basic pattern. Noting
the exp() term in the two-dimensional expression, then for a transform F(k, l) of size N ×N,
then it will be cyclic of period N in both the k and l directions, so we have that.

F(k±nN, l ±mN) = F(k, l)

so we can shift the F(0,0) term in two dimensions to give,

F(k, l) for k & l = −N
2 , . . . ,0 . . . , N

2 −1

as shown in figure 7, and has been using to display the modulus squared8 of the Fourier trans-
form in figure 2 (b). The |F(u,v)|2 is identical to the Optical Diffraction pattern. Usually
displayed with the bright centre in the middle.
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F(k,l)

(0,0) (N−1,0)

(0,N−1) (N−1,N−1)

F(k,l)

(N/2−1,N/2−1)(−N/2, N/2−1)

(−N/2,−N/2) (N/2−1 , −N/2)

Shifted 

(0,0)

Figure 7: Range of the Fourier Transform of and N ×N image shifted so that F(0,0 is at the
centre.

For a real sampled input image f (i, j) again we can write the Fourier Transform

F(k, l) = FR(k, l)− ıFI(k, l)
8that is actually displayed is log(|F(k, l)|2 +1) to reduce the dynamic range.
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where, after some effort, we get that, we can expand the expression for the Fourier Transform
to get that,

FR(k, l) =
N−1
∑
i=0

N−1
∑
j=0

f (i, j)
(

cos
(

2π
ik
N

)

cos
(

2π
jl
N

)

+ sin
(

2π
ik
N

)

sin
(

2π
jl
N

))

and that

FI(k, l) =
N−1
∑
i=0

N−1
∑
j=0

f (i, j)
(

cos
(

2π
ik
N

)

sin
(

2π
jl
N

)

+ sin
(

2π
ik
N

)

cos
(

2π
jl
N

))

Now we have that cos() is symmetric, and sin() is anti-symmetric, while

FR() has form cos()cos()+ sin()sin()

FI() has form cos()sin()+ sin()cos()

so about the centre at (0,0) then

FR(k, l) ⇒ Symmetric
FI(k, l) ⇒ Anti-symmetric

which can be written out explicitly as

FR(k, l) = FR(−k,−l)
FR(−k, l) = FR(k,−l)

FI(k, l) = −FI(−k,−l)
FI(−k, l) = −FI(k,−l)

as is shown in figure 8. The modulus square, or power spectrum, of the Fourier transform is

(−k,−l) (0,−l) (k,−l)

(0,l) (k,l)

(k,0)(−k,0)

(−k,l)

Figure 8: Symmetry of the two-dimensional Discrete Fourier transform.

|F(k, l)|2 = |FR(k, l)|2 + |FI(k, l)|2

which must also be symmetric about the centre, which is clearly seen in figure 2 (b), being the
Fourier transform of the real image in figure 2 (a).
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This symmetry initially looks simple, but has to be considered carefully when N is even, to see
this consider a simple case when N = 4, then in Fourier, after shifting the (0,0) to the centre
we have

FR(k, l) and FI(k, l) for k & l = −2, . . .1

as shown in figure 9.
In the Real Part there are:

• Four elements with no pair, these being (0,0), (−2,0), (0,−2) and (−2,−2).

• Four elements with symmetric pairs being (−1,−1)⇔ (1,1) (−1,1)⇔ (1,−1), (0,−1)⇔
(0,1) and (−1,0) ⇔ (1,0).

• Two elements where their symmetric pair has been cyclically wrapped round by period
4, there being (−2,−1) ⇔ (−2,1) and (−1,−2) ⇔ (1,−2).

which gives a total of 10 elements that depend on the input data with the other 6 given by the
symmetry properties.
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Real part Imaginary Part

Figure 9: Symmetry of the Real and Imaginary parts of 4×4 Fourier Transform.

In the Imaginary Part there are:

• Four zero elements , these being (0,0), (−2,0), (0,−2) and (−2,−2), since sin(0) =
sin(π) = 0.

• Four elements with anti-symmetric pairs being (−1,−1) ⇔ (1,1) (−1,1) ⇔ (1,−1),
(0,−1) ⇔ (0,1) and (−1,0) ⇔ (1,0).

• Two elements where their anti-symmetric pair has being cyclically wrapped round by
period 4, there being (−2,−1) ⇔ (−2,1) and (−1,−2) ⇔ (1,−2).

which gives a total of 6 elements that depend on the data, 6 more being given by the anti-
symmetry and 4 always zero. Thus combining the real and imaginary results there are 16
elements in Fourier space that depend on the input data, so again there are the same number of
elements in both spaces.
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In the general case for the Discrete Fourier transform of an N ×N pixel real image then in
Fourier space we have

N2

2
+2 → Real Values

N2

2 −2 → Imaginary Values

giving a total of N2 values in the complex Fourier plane that depend on the input data, the
others being given by the symmetry conditions. This allows allows the Fourier transform to
be stored in the same amount of space as the original image which is of significant importance
when N is large.

3.4 Calculation of the two-dimensional Discrete Fourier Transform
The expression for the two-dimensional Fourier transforms given in equation 2 and its inverse
in equation 3, appear to be four-dimensional summations where it is required to sum over all
N ×N pixels of the image for each point in Fourier space. However noting that the exponential
terms is separable, the the two-dimensional Fourier transform can be implemented in two passes
giving to give

F(k, l) =
N−1
∑
j=0

P(k, j)exp
(

−ı2π
l j
N

)

where

P(k, j) =
N−1
∑
i=0

f (i, j)exp
(

−ı2π
ki
N

)

which can be considered as

1. N one-dimensional DFTs along-the-rows

2. N one-dimensional DFTs down-the-columns

as shown in figure 10. So we can implement the two-dimensional DFT, by a series of 2N
one-dimensional DFTs.

F{}

F{}

P(k,j) F(k,l)f(i,j)

Figure 10: The separability of the two-dimensional Fourier transform into one-dimensional
Fourier transforms.
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3.5 Calculation of the one-dimensional Discrete Fourier Transform
The one-dimensional Discrete Fourier Transform of sampled signal f (i) is given by

F(k) =
N−1
∑
i=0

f (i) exp
(

−ı2π
ki
N

)

which initially looks like a computational problems that scales at N2, since for each of the N
values of k there is a summation over the N samples of f (i). This makes the direct calculation
with a pair of nested for loops very computationally expensive and, for large N computation-
ally impractical.
This calculation is typically performed by the Fast Fourier Transform algorithm that im-
plements that above formula, with certain restrictions, and a computational cost that scales at
N log2(N), which is a very substantial saving for large N.The restrictions are:

• Cooley & Tukey original algorithm from the mid-1960’s only works for

N = 2n

known as the Radix-2 transform. This algorithm is very widely available in libraries or
packages. It can also be coded in a few dozen lines of code.

• Singelton developed a Mixed-Radix FFT that works with N log2(N) cost for highly fac-
torisable numbers, so typically

N = 2n+13m5p

This is much more complex scheme involving several hundred lines of code and is avail-
able in many computer languages. Singeltons code will actually take a DFT for any value
N but unless N is highly factorisable, it will use the slow DFT algorithm that scales at
N2.

• Numerical Package many numerical and data analysis packages such as MATLAB, LAB-
VIEW, IDL, R-PROJECT etc., all have internal FFT and the restrictions on N depend on
the internal algorithm used, for example R-PROJECT uses Singeltons algorithm.

• FFTW9 by Frigo & Johnson at MIT have developed a C-library that gives N log2(N)
scaling performance for any N removing the usual factorisable restriction. This packages
also gives highly optimsied schemes for two and three dimensional Fourier transforms
and real-only transforms.

Of these the FFTW packages is most efficiency, and for such a complex set of algorithms,
relatively easy to use from C/C++, or via the local jfftw310, interface methods, from JAVA.

3.6 Practical Considerations
Whether using one-dimensional DFTs for signal processing or, in our case, two-dimensional
DFTs in image processing and analysis, there are a few practical considerations.

9see www.fftw.org
10see details of project work
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Most common image are recorded at 8-bits per pixel, so each pixel is an integer in the range 0→
255. This is usually limited by the quality of the recording sensor, typically a CCD array and
is sufficient for all but the most demanding scientific applications, for example in astronomy at
x-ray medical imaging, 12-bits giving range of 0 → 4096. Therefore most images can simply
be displayed on a computer monitor with

0 = Black ⇒ 255 = White

we will consider this in more detail later, but for most images, there is no significant problem
here. The DFT, on the other hand is complex, and must be calculated in as floating point num-
bers. This has the effect both increasing the computational cost, since floating point calculation
take longer than integer, and making the DFT more difficult to display and visualise. The most
obvious function to display is

|F(k, l)|2 power spectrum

which gives the power in each spatial frequency, however, for most images this has a huge
dynamic range, 0 → 1012 being typical. To if the maximum, usually at (0,0) is displayed as
white on a computer screen, then all the other pixels tend to be black, so we are unable to see the
details. The dynamic range can be reduced using any monotonic function, the most common
being to display

p(k, l) = log
(

|F(k, l)|2 +1
)

where the extra 1 is used to prevent problems when |F(k, l)|2 ≈ 0.0. This is what is displayed
in figure 2 (b), which is the two-dimensional Fourier transform of the TOUCAN.
Most of the numerical algorithms to calculate the two-dimensional FFT result in a real and
imaginary two-dimensional floating point arrays with the location of F(0,0) at the top/left,
where as we have seen above, we can shift the (0,0) to any location without affecting the
information displayed. So we typically want to shift the F(k, l) so that the (0,0) point is located
at the centre of the screen. To perform this shift consider convolution of F(l, l) with

δ
(

i− N
2

, j− N
2

)

then from the convolution theorem, it can be shown, see workshops question 3.3 that this is
equivalent to a multiplication in real space with a checker pattern of

1 −1 1 . . . −1
−1 1 −1 . . . 1
1 −1 1 . . . −1
... ... ... . . . ...

−1 1 −1 . . . 1

so if we pre-multiply f (i, j) with this pattern then the resultant Fourier transform will be centred
in the middle of the output arrays, as shown in figure 2 (b).

3.7 Sampling Theory
Before we can use the above theory we need as ask what, given an continous image f (x,y),
then what

∆x and ∆y
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should we use to retain the all useful information in f (x,y) when it is sampled. We well find
that the answer to this depends on the maximum spatial frequency in the image, which is turns
depends on the imaging system used. This is the problem considered by sampling theory.

3.8 Sampling a one-dimensional function
If we have a continious function f (x), and the width of its Fourier tranforms is a, so that,

F(u) = 0 for |u| > a/2

then Shannon’s Sampling Theoem11, states that f (x) is completely specified by taking samples
as intervals

∆x =
1
a

but does not say anything about how many samples must be taken.
Before looking more closely at this, we need a mathemtical model for taking a sample. We
know from the shifting property of the δ-function, that for a continious function f (x) then

Z ∞

−∞
f (x)δ(x−a)dx = f (a)

which is shown in figure 11, which has the effect of measureing, or sampling f (x) at the position
x = a.

f(x)
f(a)

xa0

Figure 11: The shifting property of the δ-function.

If we want to sample or measure a function at regular intervals of ∆x, then consider a sampling
function consisting of a series of δ-functions separated by ∆x, so being,

s(x) =
∞

∑
i=−∞

δ(x− i∆x)

which is the Comb function, shown in figure 12.
We have seen above that taking a single sample is equivalent to multiplication by a single δ-
function, so taking a series of samples is equivalent to multiplication by the sampling function,
s(x). So if we sample f (x) at interval ∆x, then in real space we have

f (x)s(x)
11also known a Nyquist sampling frequency

School of Physics DIA(U01358) and TOIP(P00809) Revised: 26 September 2007



DIGITAL SAMPLING Session: 2007-2008 -13

−2 −1 0 1 2 3

∆ x

Figure 12: The Comb function, consisting of a series of δ-functions seperated by ∆x.

Then from the convolution theorem we have that this is equivalent to a convolution in Fourier
space of,

F(u) � S(u)

where S(u) is the Fourier Transform of the s(x) the Comb function. It-can-be-shown (see
Tutorial 7 of Fourier Transform Booklet) that this is also a comb is reciprocal spacing, given
by:

S(u) =
∞

∑
i=−∞

δ(u− i
∆x)

So in real space we have the condition shown in figure 13 where the continious function f (x)
is samples at intervals of ∆x to give our discrete function f (i). In Fourier space we have the
equivalent condition, as shown in figure 14 where the F(u) is convolved with S(u), which forms
a series of replications of F(u) at an interval of 1/∆x.

0 4321 5
ι

x

f(x) s(x) f(i)

x x

X =

∆

Figure 13: Sampling of a continious function in real space.

If the width of F(u) is a, then provided that

a ≤ 1
∆x

then the replications in Fourier space will be separated with each replication being a perfect
copy of F(u). The sampling process that retain F(u), and since the Fourier transform is a
unitary transform then f (x), the original function, can be completely recovered any of the
replicated versions of F(u), so the sampled version f (i) thus retains all information about
f (x), which is exactly what Shannon’s Theorem states.
The implications of the sampling conditions are that there are three possible conditions, these
being:
Shannon Sampling: where the condition that

∆x =
1
a
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∆1/     x ∆1/     x

F(u) S(u)

a
u u

a

F(u)     S(u)o.

Figure 14: Effect of sampling continious function in Fourier space

is exactly obeyed. In Fourier space the replicated order are adjacent but non-overlapping as
shown in figure 15. This is the condition for taking the least number of samples, and the
maximun frequency recorded is given by

u0 =
1

2∆x

F(u)

a

1/    x∆

ua a

Figure 15: Effect of Shannon sampling in Fourier space

Undersampling: where the input function f (x) is sampled less often than required to retain all
information, so that

∆x >
1
a

This results in overlap of the replicated orders in Fourier shape as shown in figure 16. This
corrupts the Fourier transform in the area of overlap, which results in loss of information about
F(u) and hence loss of information about f (x). This the original continious function can no
longer be recovered from the sampled data f (i). The effect of this depemds on the details of
the Fourier transform F(u), but typically results in spurious high frequency noise and ringing
in any reconstrcution of f (x), which is known as ailising.
Oversampling: where the input function f (x) is sampled more often than required, so that

∆x <
1
a

Here the replicated order are separated by blank regions in Fourier space as shown in figure 17.
This adds no additional information over Shannon sampling, but you have more data so subse-
quent digital processing is slower.
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Overlap

F(u)

ua

1/    x∆

Figure 16: Effect of under sampling in Fourier space resulting in overlap of the replicated
orders.

BlankBlank

F(u)

a

∆1/    x

ua a

Figure 17: Effect of over sampling in Fourier space.

3.9 Sampling a two-dimensional function
When we sample a two-dimensional function f (x,y), typically an image in our case, all of
the above results carry through exactly as above. We now define a two-dimensional sampling
function being

s(x,y) =
∞

∑
i=−∞

∞

∑
j=−∞

δ(x− i∆x , y− j∆y)

which is a grid of δ-functions with separations ∆x , ∆y in the x and y directions. Again we can
consider sampling as multiplication by the sampling function in real space, where we have

f (x,y)s(x,y)

as shown in figure 18.

f(x,y) s(x,y) f(i,j)

Figure 18: Two-dimensional sampling in real space.

Then in Fourier plane we get:
F(u,v)�S(u,v)

School of Physics DIA(U01358) and TOIP(P00809) Revised: 26 September 2007



DIGITAL SAMPLING Session: 2007-2008 -16

where we have that
S(u,v) =

∞

∑
i=−∞

∞

∑
j=−∞

δ
(

u− i
∆x , v− j

∆y

)

being also a grid of δ-functions but with reciprocal spacing of 1/∆x and 1/∆y in the u and u
directions. The result in Fourier space is a two-dimensional replication of F(u,v) as shown in
figure 19.

S(u,v)

∆1/   x ∆1/   y

∆1/   x

∆1/   y

a

F(u,v)
v

u
b

a

b

Figure 19: Two-dimensional sampling in Fourier space.

Now if F(u,v) is contained with a rectangle of size a× b, then the replications will be fully
separated provided that that ∆x and ∆y are small enough, and in particular is

∆x <
1
a ∆y <

1
b

so setting the Shannon Sampling Rate in two-dimensions to be

∆x =
1
a ∆y =

1
b

In most practical cases whe will take ∆x = ∆y, simplifies the analysis considerably.

3.10 Functions of Finite Extent
Up to now we have considered either one or two-dimensional functions of infinte extend so, in
principal, we have been taking a infinite number of samples, clearly not very practical. What
we more typically really have is a function f̃ (x) being

f̃ (x) = f (x) w(x)

where w(x) is a window function given by,

w(x) = Π
( x

2d

)

so that f̃ (x) is of extend d so that f (x) is only known in the range x = −d/2 → d/2, as shown
in figure 20.
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f(x)

w(x)

xd/2−d/2 0

Figure 20: A windowed function of width d.

In real space we have a multiplication, from the convolution theorm in Fourier space we have
that,

F̃(u) = F(u)�W (u)

where W (u) is the Fourier tansform of a tophat so is given by,

W (u) = sinc(πdu)

as shown in figure 21, which for large du tends to zero, but is still of infinite extend.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20  0  20  40

Figure 21: Plot of sinc(x), for large x.

This looks like a major problem for sampling theory, since although F(u) mak be of finite ex-
tend, being of width a, as used above, but by limiting f (x) is real space, we cane just convolved
F(u) with a function of infinte extend, so that,

W (u) infinite in extend =⇒ F̃(u) infinite in extend

so width in Fourier space of F̃(u), which is what we are really sampling, a → ∞ so that

∆x =
1
a → 0

so sample point become infititely close together as shown in
However when d is large, so we have a large range of f (x), then as shown in figure 22 then

W (u) = sinc(πdu)
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becomes sharply peaked with the first zeros at ±1/d, with limit being,

d → ∞ then W (u) → δ(u)

so the width of F̃(u) is the same as the width of F(u), so we can apply Shannons Sampling with

∆x =
1
a

where a is the width, or more technically, bandwidth of the F(u), the Fourier transform of f (x)
the infinite extent function. Note that d is the length of the signal sampled, so if the sampling
rate is ∆x then

d = N ∆x
so if N large, (take a lot of samples), then we can assume Shannon Sampling

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -20  0  20  40

Figure 22: Plot of sinc(du), as d become larger

Now if we consider a function f (x) with bandwidth a, so that

F(u) = 0 for |u| > a/2

then we can define the Shannon Sampling rate as

∆x =
1
a

If in real space we take N samples, then the window length is N∆x, so that

d = N ∆x

as we have just seen.
In Fourier space we cow consider sampling the funtion F̃(u), where, as we have just seen that
if N is large, then F̃(u) ≈ F(u). The inverse Fourier transform of F̃(u) is then

f̃ (x) = f (x) w(x) = 0 for |x| > d/2
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which is if width d, so we have the Shannon Sampling rate for F̃(u) given by

∆u =
1
d =

1
N∆x

so for a function sampled at a rate ∆x is real space, the equivalent sampling is Fourier space is
∆u = 1

N∆x .
In two-dimensions we have exactly the same analysis, so if we have a function f (x,y) which
is samples in real space at internals (∆x,∆y), and we take N ×N samples, then the equivalent
sampling in Fourier space is,

∆u =
1

N∆x & ∆v =
1

N∆y

which is what we previously stated in equation 1.

3.11 Example Ideal Imaging System
Consider applying this theory to real imaging system, we have seen from the previous section
that, provided that the system is linear and space invariant the imaging process can be char-
acterised by the convolution of object, o(x,y) and system point spread function h(x,y), to give
the continious image to be detected by the system of,

f (x,y) = o(x,y)�h(x,y)

so in Fourier space we have that

F(u,v) = O(u,v)H(u,v)

where H(u,v) is the Optical Transfer Function being a fixed property on the imaging sytsem.
We have also covered that for an ideal12 imaging system, then H(u,v) has an analytic solution,
and in particular is given by

H(u,v) =
2
π



cos−1
(

w
v0

)

− w
v0

(

1−
(

w
v0

)2
)

1
2




plotted in figure 23, where w =
√

u2 + v2.
For an optical system with focal length f and input aperture diameter d,

v0 =
d

λ f =
1

λFNo

so that
H(u,v) = 0 for w > v0

therefore we have that
F(u,v) = 0 for w > v0

12The best possible, real system have aberration that make this worse.
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Figure 23: Shape of the OTF of an ideal imaging system.

so as shown in figure 19, F(u,v) is contained withing a square of size 2v0 × 2v0, so that the
image f (x,y) is bandlimited, which is exactly what is required for Shannon Sampling. The
Shannon Sampling rate for this is given by

∆x = ∆y =
λFNo

2
so if we consider the system of

• λ = 0.5µm (Green Light)

• FNo = 8 (Medium aperture)

• Then ∆x = 2µm.

so to fully Shannon Sample a 35 mm slide, of size 36×24mm you would need to take 18,000×
12,000 samples, so for full colour with 24-bits per pixels means a single image is 618 Mbytes!
In practice few systems are ideal and for film based systems, the limit is actually set by the
size of the silver grains in the photographic film, for examples the SUPERCOSMOS system at
ROE digitises photographic plates at a step size of 10µm.

3.12 Reconstruction from Sampled Data
Once we have sampled the data into discrete samples we have to consider the inverse problem,
of how do we reform the original data from the samples. In particular we have a function f (x)
which we have samples at interval ∆x, to obtain f (i), then if we have taken N samples we have
the value if f (x) at points,

x = x0,x0 +∆x, ,x0 +2∆2, . . .x0 +(N −2)∆x,x0 +(N −1)∆x

but to fully reconstruct13, we need to find f (x) when x is not a sample point. We have from
above that

f (i) = f (x) s(x) = F −1 {F(u)�S(u)}
13If we have obeyed Shannon Sampling, we should have retained all information about f (x).
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which is shown in figure 14, so in Fourier space we have a series of replications of F(u)
separated by 1/∆x. We can now isolate a single period by a top-hat filter of length 1/∆x, being

H(u) = Π
( u

∆x

)

as shown in figure 24, so that, provided that the replications are sufficiently far apart, the

(F(u)�S(u)) H(u) = F(u)

which in real space we have that the original function,

f (x) = h(x)� ( f (x)s(x)) = h(x)� f (i)

where h(x) is the inverse Fourier transform of H(u), which is just,

h(x) =
1

∆x sinc
(πx

∆x

)

so to reconstruct f (x) from the sampled data f (i) we have to convolve with h(x) which is know
as the interpolation function.

0 1 2 3 4 5 i
x

f(i)

∆

H(u)
f(i)F{       }

1/    x∆

1/    x∆

Figure 24: Fourier filter H(u) used to isolate a single order in Fourier space.
.

Typically we normalise to get,
h(x) = sinc

(πx
∆x

)

so that f (x) = f (i) at a sample point, known as ideal interpolation function. This looks like the
fully solution since as shown in figure 25, a sin() is placed at each sample point, where an then

• At sample point then ( f ) = f (i) since the sinc() contributions from the other point are all
zero.

• Not at sample point then f (x) is a sum of the sinc() weighted components.

The problem occurs when we are not at a sample point and N is large; the computational cost
is impractical, and approximations have to be made.
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x

Figure 25: Ideal sinc interpolation in real space.
.

3.12.1 Zero Order Interpolation

The simplest scheme is nearest neighbour rule, also known as zero-order interpolation where
we set,

f (x) = f (i) where |x− i∆x| is minimised

which is mathematically equivalent to taking the interpolation function h(x) to be a top hat, so
being

h0(x) = Π
( x

∆x

)

This gives the characteristic staircase effect in the reconstruction shown in figure 26, which
sharp discontinuities when the approximation swaps from one sample to the next.

0

10 2 3 4 5 i 0 21 3 4 5
x x

x

x x

f(i) f(x)

∆ ∆

∆
h  (x)

Figure 26: Zero order interpolation in real space.

The real problem of this scheme is evident in Fourier space. In real space we have convolved
f (i) with h0(x), so the Fourier space we have multiplied the periodic Fourier domain by it
Fourier transform which is

H0(u) = sinc(π∆xu)
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rather than the ideal window function, as shown in figure 27. This only partially separates the
required single replication, and in particular

• low pass of the partially isolated F(u) since H0(u) is not constant over the range −1/2∆x →
1/2∆x.

• aliasing where information from the replicated orders are included in the reconstruction
since H0(u) 6= 0 for |u| > 1/2∆x.

Of there two issues, aliasing is by far the largest problem as it introduces spurious frequen-
cies, and hence information, that were not in the original data. This is where the extra sharp
transitions or edges come from in figure 26.

0

Aliasing

Low pass

Replicated Orders

u
∆1/    x

H  (u)

F(u)

Figure 27: Zero order interpolation in Fourier space.

In two-dimensions where the sampled image is f (i, j), we the nearest neighbour rule becomes

f (x,y) = f (i, j) for |x− i∆x| and |y− j∆y| minimised

so the interpolation function become a two-dimensional top-hat being given by

h(x,y) = Π
( x

∆x

)

Π
(

y
∆y

)

The effect of using this to expand an image is shown in figure 28 where a 128× 128 pixel
original image is expanded to a 256× 256 pixel image using zero-order interpolation. In the
expanded image the block pattern is just visible, while in Fourier space the effect is rather more
dramatic. The central region, outlined in red, is a low-passed version of the Fourier transform
of the original image, but all the outer regions are spurious, aliased, information from the
replicated Fourier orders. The example shown that the somewhat abstract interpolation theory
does really apply in practice and simply doubling the size of the image by turning each pixel
into a 2×2 block has had a huge effect on the Fourier transform of the image14.

3.12.2 First Order Interpolation

The next order of interpolation is linear or first order interpolation where we take a linear
combination of the two closest sampled elements, so for a for the value of f (x) we take,

i = int
( x

∆x

)

and α =
x− i∆x

∆x
14This is the first example of an apparently simple bit of processing having a very significant effect on the image

data, we will see more later in the course.
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Figure 28: Effect of zero order interpolation in two-dimensions

so that i and i+1 are the two closest sample point, and then we have that

f (x) = (1−α) f (i)+α f (i+1)

which we can represent mathematically as convolution with a pyramid interpolation function
h1(x) given by,

h1(x) = 1− |x|
∆x for |x| ≤ ∆x

= 0 else

which is shown in figure 29, which gives a smoother reconstruction of f (x) without the sharp
steps.

0 1 2 3 4 5 i

x x

x0 543210

xh(x) f(x)f(i)

∆ ∆

∆

Figure 29: First order interpolation in real space.

In Fourier space we are applying the function H1(u) to the replicated Fourier domain, where
can be shown15, that

H1(u) = sinc2(π∆xu)

being just the square of the previous zero-order interpolation function H0(u). The plot of sinc()
and sinc2() shown the difference, with

• sinc() having a fast fall of in the range −1/2∆x → 1/2∆x, so has a greater low pass
filtering effect on the reconstruction, so giving a smoother reconstruction,

15See The Fourier Transform (what you need to know)
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• sinc() is must smaller in the region |u| > 1/2∆x, so introduces much less of the spurious
aliased information.
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sinc(x)
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Figure 30: Plot of sinc() and sinc2() on the same scale.

In two-dimensions when we have a sampled image f (i, j), the interpolation function in real
space becomes square pyramid given mathematically by

h1(x,y) =

(

1− |x|
∆x

)(

1− |y|
∆y

)

which can be implemented in real space as a weighted average of four adjacent points as shown
in figure 31. We define

i = int
( x

∆x

)

& j = int
(

y
∆y

)

being the closes sample point located in top/left, and then

α =
x− i∆x

∆x & β =
y− j∆y

∆y

as being the distance to the required point (x,y). The weighted average then become,

f (x,y) = (1−α)(1−β) f (i, j)+α(1−β) f (i+1, j)+

(1−α)β f (i, j +1)+αβ f (i+1, j +1)

so we have to access four points for each x,y value.
The effect of this method of enlarging the 128×128 image to 256×256 is shown in figure 32.
Compared to zero-order interpolation in figure 28, in real space the block pattern is almost
totally gone due to the large reduction in the aliasing, but reconstruction looks rather blurred
due to the low pass effect reducing the sharpness of the edges. This will be discussed in detail
in the filtering section of this course. The same effect is visible in Fourier space with the central
region, outlined in red, being more heavily low passed filtered and the amplitude of the aliased
sections being much reduced. We will consider the implications of interpolation again later in
the course.
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Figure 31: Two-dimensional first order interpolation in real space.
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Figure 32: Effect of first order interpolation in two-dimensions

3.13 Higher Order Interpolation Schemes
There are range of higher order schemes to define h(x) based on polynomial, splines, Gaussians
and limited range cos()s, etc, In general the larger the window over which the interpolation
is formed be better the reconstruction. There schemes have been mainly developed for one-
dimensional signal processing, where due to the relatively small amount of data a range of
complex schemes have been developed, especially in digital music playback. In digital imaging
the amount of data normally precludes use of these complex schemes, and interpolation is
almost always limited to zero, first order as discussed above, and occasionally bicubic where
the reconstructed value is formed from a weighted average over a 4×4 neighbouring samples.
This is much more computationally expensive, but does result in improved reconstruction, and
in particular a reconstruction that is continuous and has continuous partial derivatives. This
scheme is especially favoured in digital photography where the smoothest and most natural
result is required.

3.14 Summary
In this long theory section we have considered

1. Digital representation of images in real and Fourier space.

School of Physics DIA(U01358) and TOIP(P00809) Revised: 26 September 2007

http://en.wikipedia.org/wiki/Bicubic_interpolation


DIGITAL SAMPLING Session: 2007-2008 -27

2. The discrete Fourier transform and its properties in one and two dimensions.

3. Calculation of the discrete Fourier transform by the FFT, and practical consideration in
its calculation.

4. Sampling theory in one and two dimensions from a Fourier viewpoint.

5. Limitations of the sampling theorem and its practical application to an ideal optical imag-
ing system.

6. Reconstruction from sampled and the ideal interpolation function.

7. Zero and First order interpolation and their effects in real and Fourier space.

8. Outline of higher order interpolation schemes.
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Workshop Questions

3.1 Two-dimensional Symmetry
Show that the DFT of a two-dimensional real function has the symmetry properties of

FR(k, l) = FR(−k,−l)
FR(−k, l) = FR(k,−l)

FI(k, l) = −FI(−k,−l)
FI(−k, l) = −FI(k,−l)

3.2 Symmetry Pairing
Verify for a 6×6 image that the DFT of a two-dimensional real function has:

N2

2 +2 Independent real values

N2

2 −2 Independent imaginary values

Fourier filters involve multiplying the DFT by a filtering function H(i, j). Many of these filters
are real only. Suggest a scheme for packing the real and imaginary parts of a DFT into a square
array that makes multiplication with such a filter simple.

3.3 Shifting The Centre
Show that if your two dimensional DFT code locates the (0,0) term in the top/left of the array,
then this can be shifted to the centre of the array by pre-multiplying the by a ±1 checker-
board.

3.4 Speed of the FFT
On a particular computer system the FFT of a 128× 128 image takes 0.11 seconds, estimate
how long this system would take to calculate the FFT of a 1024×1024 image.

3.5 CCD Sensors
A CCD sensor is a two-dimensional array of detectors that can be used to sample an image. A
typical TV quality CCD camera will have 586×768 sensors on a 15 by 20 mm area with a 3 : 4.
Calculate the size of the sensors and the maximum spatial frequency in the detected image.
You wish to use this CCD camera to image pages of text for a character recognition system that
is able to easily resolved 8pt (1pt is 1/72nd of an inch) letters. What magnification is required
and how large a page of text can be images at once.
Hint: To easily resolve a letter you must be able to resolve line approximately 5 times closer
together than the minimum separation of lines in the letter.
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