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Topic 9: Edge and Line Detection

9.1 Introduction

One of the major tasks in image processing is the enhancementand detection of edges followed
by the extraction of primitive features, mainly lines. Thisis used in multiple applications
especially in remote sensing and robotic vision.

9.2 Edge Detection

The aim of all edge detection techniques is to either enhanceor mark edges and then detect
them. Edges are rapidly varying parts of the image so are represented by high spatial frequen-
cies, so for the initial enhancement we need some type of highpass filter, which, as we have
seen in previous sections, can be viewed as eitherfirst or secondorder differentials.

9.2.1 First Order Differentials

In one-dimension the differential of an edge is as shown in figure 1. The first order differential
goes alternatively positive then negative, so the peak of its modulus locates the centre of the
edge. We can then detect the edge by a simple threshold of
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Figure 1: A one-dimensional edge and its first order differential.

In two-dimensional, in images, things are more complex since there are two derivatives being
with respect tox andy which gives the vertical and horizontal edges with,
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But we really want to detect edges inall directions. In two-dimensions the first order differen-
tial ∇ f (x,y) is a vector, given by

∂ f (x,y)
∂x

î +
∂ f (x,y)

∂y
ĵ

so we need to calculate the modulus of the gradient, given by
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which is anon-linearoperation, so has no direct equivalent in Fourier space. We can now
threshold to give the edges, with

|∇ f (x,y)| > T Edge

|∇ f (x,y)| < T no Edge

To implement this for a digital image we know from previous that in real space first order
differentials can be formed by convolution with the simple 3×3 mask of
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so we can calculate the
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This implementation requires considerable numerical calculation since the that square root
must be calculated in floating point and afaster1 approximation to the modulus of the gra-
dient can be formed by

∣

∣

∣

∣

∂ f (i, j)
∂i

∣

∣

∣

∣

+

∣

∣

∣

∣

∂ f (i, j)
∂ j

∣

∣

∣

∣

which is frequently a computational saving of 30%.

This is a slight variation on the first order differential filter where two differentials are given
by:

∂ f (i, j)
∂i

=





−1 0 1
−2 0 2
−1 0 1



⊙ f (i, j) and
∂ f (i, j)

∂ j
=





−1 −2 −1
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1 2 1



⊙ f (i, j)

where the centre of the differentials is weighted by two. This is known as theSobel Filterwhere
the full filter is formed from the geometric sum while thefastSobel by the sum of the moduli.
This is the most common simple first order differential edge detector with typical results shown
in figure 2 showing good clean edges especially when used on a low noise image.

To get the finaledge detectedimage we must then threshold edge enhanced image. There are a
range of possible scheme to set this threshold, for example

1known an Manhattan approximation.
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Figure 2: Effect of the sobel filter.

1. Guess:for example set threshold at 30% of maximum|∇ f (i, j)|, this is often enough.

2. Percentage of Edge:Set threshold so thatx% of image classified as edge. To form this
take the histogram of|∇ f (i, j)| set threshold to setx% of pixels toon, here 10% is a good
guess for many natural scenes.

A typical example of setting a threshold at 10%edge pixelsis shown in figure 3. This scheme is
very useful simple edge detector for low noise, high contrast images but there are problems of
an arbitrary threshold value that has be set, the resultant edges arethick, possibly being many
pixels wide, edges are oftenbrokenwith gaps and there are often straynoisepoints where
isolated points are classified as edge.

Figure 3: Threshold of Sobel image with 10% of images classified asedge.

The binary edge image can be furtherpost processingto try and remove some of the problems,
the most common being

1. Thick Edges: if threshold is too low edges frequently thick, being many pixels wide.
There are a range ofedge thinningtechniques that try to thin edges to a single pixel by
removing edge pixels while keeping the edges connected. Seetextbooks for details.

2. Broken Edges:Range oredge-joiningtechniques to try and bridge gaps (seeComputer
Vision literature). also theHough Transformconsidered later that fits lines.

3. Noise Points: Modified threshold filter ormedianto remove isolated points or non-
connected double points.

Range of these in the literature. All work to some extent, however if theSobelfilter fails to
give acceptable results it is usually better to look for a better technique rather than to attempt
extensive post processing.
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9.3 Second Order Differentials

If we consider the second order differential of an edge in onedimension as shown in figure 4,
then we see that the centre of the edge is located when this is zero, so the the edge is located
at thezero crossingof the second order differential. This is therefore a schemeto detect edges
withoutthe arbitrary threshold require for the first odder schemes.

Zero Crossing

d  f

dx

2

2

Figure 4: Second order differential of an edge in one-dimensions.

In two-dimensions the second order differential is the Laplacian given by

∇2 f (x,y) =
∂2 f (x,y)

∂x2 +
∂2 f (x,y)

∂y2

Which, as seen previously, can be implemented digitally by aconvolution of the single[3×3]
mask given by

∇2 f (i, j) =





0 1 0
1 −4 1
0 1 0



⊙ f (i, j)

giving the a typical image as shown in figure 5.

Figure 5: Laplacian of an image formed with a[3×3] mask.

Find the edges by location the zero crossings, or thezero contour. The resultant edges will be

• Thin Edges: the edges occurbetweenpixels. Always get thin edges, but difficult to
display on a digital image.

• Closed Loops:edges always form closed loops, reduces break-up of edges, but can cause
problems as corners.
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• Noise Problems:Laplacian is a high pass filter, so enhances high frequencies, and thus
noise.

The resultant edges images are difficult to post process so weneed to reduce the effect of noise;
we typically want to smooth the imagebeforewe form the Laplacian. For example use Nine
point average, then Laplacian. Noting that the convolutionis a linear operation, the two[3×3]
convolutions can be implemented as a singe[5×5] convolution of:





0 1 0
1 −4 1
0 1 0



⊙





1 1 1
1 1 1
1 1 1



 =













0 1 1 1 0
1 −2 −1 −2 1
1 −1 0 −1 1
1 −2 −1 −2 1
0 1 1 1 0













9.4 Laplacian of Gaussian Filter

We have seen previously that a good way to smooth an image is toconvolve it with a Gaussian.
This results in a reduction in noise and most importantly does not introduce ringing artifacts
that could be miss classified as asedge. The Laplacian of the smoothed image is them

g(i, j) = ∇2 [h(i, j)⊙ f (i, j)]

whereh(x,y) is a Gaussian of the form

h(i, j) = exp

(

− r2

2σ2

)

wherer2 = i2 + j2 andσ is the width of the Gaussian. The convolution is linear, so wecan
write

g(i, j) =
[

∇2h(i, j)
]

⊙ f (i, j)

We can then differentiate the Gaussian to get

∇2h(r) =
1

σ2

[

r2

σ2 −1

]

exp

(

− r2

2σ2

)

which for σ = 1 has shape, in real space, as shown in figure 6.
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Figure 6: The Laplacian of Gaussian (LoG) filter in real spacefor σ = 1.
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In real space the LoG Filter is rather large in real space, needing for σ = 1 a mask of approxi-
mately 11×11 pixel to get a good representation. It is therefore computationally advantageous
to implement in Fourier space. In Fourier space we have that

∂h(i, j)
∂i

= F −1
{

ı
2πk
N

H(k, l)

}

whereH(k, l) = F {h(i, j)}, andh(i, j) is of sizeN×N pixels, so that real space filter is given
by

∇2h(i, j)) = F −1

{

−
(

2πw
N

)2

H(k, l)

}

wherew2 = k2+ l2. Now H(k, l) is a Gaussian of reciprocal width2, which is given by

H(k, l) = exp

(

−w2

w2
0

)

where

w0 =
N

2πσ
so that in Fourier space the Laplacian of Gaussian filter is given by a Fourier Filter of

(

2πw
N

)2

exp

(

−w2

w2
0

)

This is shown plotted in figure 7 forN = 256 andw0 = 32 has shape of a band-pass filter with
the Gaussianat high spatial frequencies giving thenoise reduction, and theparabolaat low
spatial frequencies gives theLaplacian
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Figure 7: The Laplacian of Gaussian (LoG) filter in Fourier space.

The effect of this on an image is shown in figure 8 which shown a smoothed Laplacian image
with no ringing or extra artifacts.

2See Fourier transform booklet.
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Figure 8: Laplacian of Gaussian filter applied to an image.

9.5 Difference of Gaussian (DoG) Filter.

A very closely related Fourier filter is theDifference of Gaussians, (DoG) which is defined by

H(w) = exp

(

−w2

w2
0

)

−exp

(

−w2

w2
1

)

being the difference of two Gaussians. This is again a band-pass filter, which is plotted in
figure 9 (a) withw0 = 40 andw1 = 20 for a 256×256 image. We can see by comparison with
figure 7, that this will also take an approximate to a smoothedLaplacian of the image now with
two parametersw0 which controls to the extend of the smoothing andw1 which controls the
steepness of the filter at low spatial frequencies, and thus the extend of the edge enhancement.
The effect on an image is shown in figure 9 (b), being almost identical to the Laplacian of
Gaussian filter in figure 8.
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(a) Filter profile (b) Effect on image.

Figure 9: Difference of Gaussian (DoG) filter and its effect on an image.

Fourier Transform of the difference of Gaussians, is again adifference of Gaussians, to in real
space,it can be shownthat the filter is given by

h(r) =

[

1
σ0

exp

(

− r2

2σ2
0

)

− 1
σ1

exp

(

− r2

2σ2
1

)]

where we have that

σ0 =
N

2π w0
& σ1 =

N
2π w1

School of Physics Theoy of Image Processing (P00809)Revised: 10 November 2006



E L D Session: 2005-2006 -8

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

D(x)

Figure 10: Difference of Gaussian filter in real space withσ0 = 3 andσ1 = 2.

whereN is the size of the image. This filter is shown forσ0 = 3 andσ1 = 2 pixels in figure 10.
This filter is also known as the Marr-Hildrith filter after thefirst people to use it is computer
vision research and more informally as theMexican-Hatfilter for obvious reasons.

This is also shown in two-dimensions forN = 128,w0 = 20 andw1 = 10 in Fourier space in
figure 11 (a) and in real space in figure 11 (b) whereσ0 ≈ 1 andσ1 ≈ 2.

(a) DoG (Fourier) (b) Real Space

Figure 11: Difference of Gaussians filter in (a) Fourier and (b) real space.

This is a very flexible edge detection filter which gives a goodsmoothed Laplacian even with
moderately hight amounts of noise. It is particularly used in Computer Vision system for which
is was originally designed. Models of animal/human visual system suggest that DOG filter is
fundamental to vision process as is essentially performed on the retina before information sent
to brain for interpretation.

9.6 Fitting Models to Image

To analyse and interpret an image we need to fit or extract a setof simple shapes, the simples
being lines. From lines it is then simple to extend to more complex shapes such as squares,
rectangles and polygons all of which are simple made of lines. The process can then be ex-
tended to consider circles and Ellipses. In this course we will consider only the simples, being
lines.

Before we fit any simple shape the first stage is the detect the edges by first applying an edge
detector, for example the simpleSobeland thresholding to obtain a binary edge images. As we
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have seen in figure 3 the resultant edges are generallynot complete but suffer from multiple
small breaks due to noise in the image.

9.6.1 Fitting a Straight Line

To fit a single straight line to data, we must fit

y = mx+h

wherem is the gradient andh is the intercept with they-axis. This is a very common fitting
problem and the simplest is aleast squaresfit. If we haven pointsyi ,xi, being point on the line,
then if we define the square error as

e2 =
n

∑
i=1

(yi − (mxi +h))2

and we get the standard solution by minimisinge2 by setting

∂e2

∂m
= 0 and

∂e2

∂h
= 0

which has the effect of minimising thevertical distance between the points and the line as
shown in figure 12.
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Figure 12: Least square fit to a single line of data points.

The works very well for a single line,but if there ismorethan one line, things get rather more
complicated and, as shown in figure 13, the simple least squares simply gives the bestaverage
line single line which is usually wrong. Least-Square only works if you have asingleline, or
are able to segment out a segment of the image that contains a single line. We need to look for
something a lot more general than this.

9.7 Hough Transform

Consider the idea of aline-to-pointtransform, as shown in figure 14 where the image data in
x,y is transformed to am,h space, so that each line is transformed to a point. Then as points
are easy to detect, then a sharp peak in them,h space would correspond to a line of the form

y = mx+h
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Figure 13: Least square fit two lines of data point by a single line.
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Figure 14: Concept of aline-to-pointwhich a line is real space becomes point.

in the original image space.

If was have such atransformand we have multiple lines, then as shown in figure 15 we then
simple get multiple points, one for each line. So if we can derive such a transform we have
solves the general line extraction problem being able to extract any number of lines from an
image. However there is a problem with the scheme as it standssince neitherm or h are
bounded, so that

Line ‖ to x axis ⇒ h not defined

Line ‖ to y axis ⇒ m→ ∞

which make the simple scheme computationally impractical,however this can be modified.
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Figure 15:Line-to-pointtransform of multiple lines results is multiple points.
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9.7.1 Polar Hough Transform

If alternatively we describe a line in polar coordinates by two variablesr,θ as shown in fig-
ure 16, wherer is the perpendicular distance to the image centre andθ is angle thatr line
makes with the positivex-axis. when, if we put the origin at the centre, then we have

− N√
2

< r ≤ N√
2

0≤ θ < π

so that bothr andθ and bounded and much more practical to calculate.

−N/2 N/2

−N/2

N/2

0

r

θ

Line

Figure 16: Description of a line in polar coordinates.

Again is we have multiple line, then we will have multiple points in r,θ space as shown in
figure 17. This is the polar Hough transform for the detectionof lines.
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Figure 17: Polar Hough transform for multiple line detection.

First think of implementation polar Hough Transforms as a series of projections at various
angles using the same projection as in collimated beam tomography as shown in figure 18. If
this is then repeated at each angle to get the full Hough Transform as shown for a rectangle
in figure 19. From this we see that the Hough transform is actually identical to the Radon
Transform used in tomography.

Now consider the mathematics of the Hough transform rather more carefully. We know that
the equation of a line at angleθ and positionr is given by

r = xcosθ+ysinθ
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Figure 18: Polar Hough transform as a series of projections.
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Figure 19: Polar Hough of a rectangular object.

which can be written in more familiar notation as:

y =
r

sinθ
− x

tanθ
= h+mx

so to form the Hough Transform we need to integrate alongeach line, so in integral form as

H(r,θ) =
Z Z

f (x,y)δ(r −xcosθ−ysinθ)dxdy

which,as noted above, is theRadon Transformseen in tomography. This formulation allows us
to look at and alternative visualisation and implementation.

Look at the Hough Transform of a single point atx0,y0, so that theimagebecomes

f (x,y) = δ(x−x0,y−y0)

so that the Hough Transform of this is just,

H(r,θ) =

Z Z

δ(x−x0,y−y0)δ(r −xcosθ−ysinθ)dxdy

which if we apply the shifting properties ofδ-fn, just gives that

H(r,θ) = δ(r −x0cosθ−y0sinθ)
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which is just a curve inr,θ space of the form

r = x0cosθ+y0sinθ

which gives as shown in figure 20.

xπ/2

x
0

r

0 θ0

πy
0

θH(r,    )

Figure 20: Hough transform of a single point.

If we now consider a line of points, then if the points form aline at a particularr0,θ0, then each
cos() line crosses at one point, giving ther0,θ0 of the line as shown in figure 21. So if the image
to be transformed is asmallnumber of binary points, (edge detected image), implementation is
just:

• Start with blank image.

• For each edge point in the input image,add“cos-line” to Hough image.

This can be significantly speed-up by using a pre-calculatedtable to return the cos() and sin().

θ

H(r,    )θ

π/2

π
0

r 0
r θ

0

Figure 21: Hough transform of a series of points that form a line.

9.7.2 Example of Hough Transform to find lines

Firstly take the image, form theSobeland threshold to getbroken lineswhere the roads are as
shown in figure 22. This image shows the typical problem of edge detection in the presence
of noise. The roads in the original image are clearly visibleto a human observer, but when
detected automatically become broken and much less distinct than expected.
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(a) Image (b) Binary edges

Figure 22: Original image and binary threshold ofSobelfiltered to initially detect the edges.

Then form the Hough, withr on the vertical axis andθ on the horizontal is shown in figure 23.
Here the lines show up a very distinct peaks where the peaks then give theequationsof the
lines in the image. This example shows that the Hough transform work very well even with
rather noisy images are broken lines.

Figure 23: Hough transform of the binary edge image with the Hough peaks identifying line in
the original image.

As can be seen from the above example, the Hough peak isnotsharp, but is made-up from a set
of crossingcos-curves, the shape of the peak will depend on the location as shown in figure 24.
The peak will have abutterflyshape where the extend of thewings is given by the length of
the line and the orientation given by the location of the linein the image. It isin principle
possible to extract the length of the line from the shape of the peak, butin practisethis is very
numerically unstable.

To detect the peak in Hough space it is usually sufficient to threshold and locate the centre. It
is also possible to filer to enhance thebutterflyshape, then threshold, or to use simpletemplate
matching, as discussed later. In practise this is actually fairlyeasyfor good low-noise images
giving a robust line detection scheme. It gives the equations of lines, but notend-points, so
works well with simple images that contain good straight lines. It us particularly useful in
robot vision where you want to detect simple geometric objects, for example to follow a track
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Figure 24: Shape of the Hough peak being a summation of cos() curves.

or line. It deal with broken lines very well and is also reasonably efficiently if there are “few”
edge points.

There are however some problems, in that it becomes very slowof there are many edge points
as you find in complex natural scenes. This also results in very complex Hough space images
where are very difficult to analyse, and in particular short lines tend to getlost in the noise. The
Hough space is also non-linear so you get different edge sensitivities in different directions and
in different parts of the image.

There are also a range of extensions of the Hough Transform, for example, circle and ellipse
detection byDouble Hough, and image transform plus Hough for general shape detection, all
of which are beyond this course; they also tend to be very computationally expensive.

9.8 Summary

In this section we have considered

1. First Order Differentials

2. Post Processing of Edge Images

3. Second Order Differentials.

4. LoG and DoG filters

5. Models in Images

6. Least Square Line Fitting

7. Cartesian and Polar Hough Transform

8. Mathematics of Hough Transform

9. Implementation and Use of Hough Transform
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