Topic 9: Edge and Line Detection

9.1 Introduction

One of the major tasks in image processing is the enhanceandretection of edges followed
by the extraction of primitive features, mainly lines. Thésused in multiple applications
especially in remote sensing and robotic vision.

9.2 Edge Detection

The aim of all edge detection techniques is to either enhanceark edges and then detect
them. Edges are rapidly varying parts of the image so aresepted by high spatial frequen-
cies, so for the initial enhancement we need some type of pagsis filter, which, as we have
seen in previous sections, can be viewed as efttetior secondorder differentials.

9.2.1 First Order Differentials

In one-dimension the differential of an edge is as shown uréd. The first order differential
goes alternatively positive then negative, so the peaksahibdulus locates the centre of the
edge. We can then detect the edge by a simple threshold of

‘df(x)
dx

>T = Edge

which will detect both positive and negative edges.

f()

d f(x)
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d f(x)
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Figure 1: A one-dimensional edge and its first order difféegn

In two-dimensional, in images, things are more complexesthere are two derivatives being
with respect tox andy which gives the vertical and horizontal edges with,

af (x,y) of(x,y)
ox ay

' — Vertical Edges

' — Horizontal Edges
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But we really want to detect edgesati directions. In two-dimensions the first order differen-
tial Of (x,y) is a vector, given by

of(xy)~ 0f(Xy) ~
ox '+ oy J
so we need to calculate the modulus of the gradient, given by

of (x,y) af(x,y) 2
|Of( xy|_\/' 3y

which is anon-linearoperation, so has no direct equwalent in Fourier space. &venow
threshold to give the edges, with

|Of(x,y)] >T Edge
|IOf(x,y)] <T noEdge

To implement this for a digital image we know from previousittin real space first order
differentials can be formed by convolution with the simple 3 mask of

. 101
afg.’”— “1 0 1|®f(,j)
: 101

and

. -1 -1 -1
af(n_,n{o 0 0 |ot)

1 1 1
. ot (i, j) of (i, )|
Of (i, )| = 5 5]

This implementation requires considerable numericaluaton since the that square root
must be calculated in floating point andastef] approximation to the modulus of the gra-
dient can be formed by

0f(i,j)‘+‘6f(i71)‘

oi 0j
which is frequently a computational saving of 30%.

This is a slight variation on the first order differential éittwhere two differentials are given
by:

so we can calculate the

2

.. -1 0 1 .. -1 -2 -1
afg."): 2 0 2|of(,j) and afé‘.’”: 0 0 0 |ofdj)
! -1 01 J 1 2 1

where the centre of the differentials is weighted by two.slisiknown as th&obel Filterwhere
the full filter is formed from the geometric sum while tfestSobel by the sum of the moduli.
This is the most common simple first order differential edggedtor with typical results shown
in figure[2 showing good clean edges especially when used @n adise image.

To get the finakdge detectennage we must then threshold edge enhanced image. There are a
range of possible scheme to set this threshold, for example

known an Manhattan approximation.
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Figure 2: Effect of the sobel filter.

1. Guess:for example set threshold at 30% of maximyiot (i, j)|, this is often enough.

2. Percentage of EdgeSet threshold so tha®s of image classified as edge. To form this

take the histogram dfif (i, j)| set threshold to se®b of pixels toon, here 10% is a good
guess for many natural scenes.

A typical example of setting a threshold at 1@4ge pixelss shown in figur&€l3. This scheme is
very useful simple edge detector for low noise, high coniraages but there are problems of
an arbitrary threshold value that has be set, the resultigegsarahick, possibly being many
pixels wide, edges are oftdmrokenwith gaps and there are often stragise points where
isolated points are classified as edge.

Figure 3: Threshold of Sobel image with 10% of images claidisedge

The binary edge image can be furthparst processingp try and remove some of the problems,
the most common being

1. Thick Edges: if threshold is too low edges frequently thick, being manyets wide.
There are a range @dge thinningechniques that try to thin edges to a single pixel by
removing edge pixels while keeping the edges connectedteRtmoks for details.

2. Broken Edges: Range ordge-joiningtechniques to try and bridge gaps (<eemputer
Vision literature). also thélough Transforntonsidered later that fits lines.

3. Noise Points: Modified threshold filter omedianto remove isolated points or non-
connected double points.

Range of these in the literature. All work to some extent, &y if the Sobelfilter fails to

give acceptable results it is usually better to look for adreechnique rather than to attempt
extensive post processing.
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9.3 Second Order Differentials

If we consider the second order differential of an edge indingension as shown in figuké 4,
then we see that the centre of the edge is located when thésas go the the edge is located
at thezero crossingf the second order differential. This is therefore a scherdetect edges
withoutthe arbitrary threshold require for the first odder schemes.

Zero Crossing

dx?

Figure 4: Second order differential of an edge in one-dirtaTss

In two-dimensions the second order differential is the bajn given by

02f 02f
_0(xy) | 0%1(xy)

2
D f (X7 y) axz ayz

Which, as seen previously, can be implemented digitally bgravolution of the singlé3 x 3]
mask given by

0 1 0
D2f(i,j))=|1 -4 1| ofd,)j)
0 1 0

giving the a typical image as shown in figlie 5.

Figure 5: Laplacian of an image formed with3ax 3] mask.

Find the edges by location the zero crossings, oz#re contour The resultant edges will be

e Thin Edges: the edges occubetweenpixels. Always get thin edges, but difficult to
display on a digital image.

e Closed Loops:edges always form closed loops, reduces break-up of edgiesatvcause
problems as corners.
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¢ Noise Problems:Laplacian is a high pass filter, so enhances high frequeramesthus
noise.

The resultant edges images are difficult to post process swe@ to reduce the effect of noise;
we typically want to smooth the imadmforewe form the Laplacian. For example use Nine
point average, then Laplacian. Noting that the convoluisamlinear operation, the tw@ x 3]
convolutions can be implemented as a siffge 5| convolution of:

01 1 1 0
0 1 O 111 1 -2 -1 -21
1 41|01 11|=|1 -1 0 -11
0 1 0 111 1 -2 -1 -21
01 1 1 O

9.4 Laplacian of Gaussian Filter

We have seen previously that a good way to smooth an imageaitmlve it with a Gaussian.
This results in a reduction in noise and most importantlysdeet introduce ringing artifacts
that could be miss classified asedge The Laplacian of the smoothed image is them

g(i, ) =D?[h(i, ) © f(i, ])]

whereh(x,y) is a Gaussian of the form

h<i,j>=exp(—2%22)

wherer? = i%+ j2 ando is the width of the Gaussian. The convolution is linear, socae
write

g(i. i) = [0?h(i, ] © £(i. j)
We can then differentiate the Gaussian to get

1 [r? r?
2

which foro = 1 has shape, in real space, as shown in figlre 6.
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Figure 6: The Laplacian of Gaussian (LoG) filter in real spacey = 1.
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In real space the LoG Filter is rather large in real spacedimgefor o = 1 a mask of approxi-
mately 11x 11 pixel to get a good representation. It is therefore cormparally advantageous
to implement in Fourier space. In Fourier space we have that

L‘Si’j) = T‘l{l%[kH(k,l)}

whereH (k,1) = F {h(i, j)}, andh(i, j) is of sizeN x N pixels, so that real space filter is given

by ,
Dzha,m:f—l{—(z%N) H<k,l>}

wherew? = k2 +12. NowH (k, 1) is a Gaussian of reciprocal withwhich is given by

H (k1) :exp(—%)

_ N
210
so that in Fourier space the Laplacian of Gaussian filtensrgby a Fourier Filter of

where
Wo

This is shown plotted in figuld 7 fad = 256 andwy = 32 has shape of a band-pass filter with
the Gaussianat high spatial frequencies giving tmeise reductionand theparabolaat low
spatial frequencies gives thaplacian
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Figure 7: The Laplacian of Gaussian (LoG) filter in Fourieacp.

The effect of this on an image is shown in figlite 8 which showmaathed Laplacian image
with no ringing or extra artifacts.

2See Fourier transform booklet.
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Figure 8: Laplacian of Gaussian filter applied to an image.

9.5 Difference of Gaussian (DoG) Filter.

A very closely related Fourier filter is tHeifference of GaussiangDoG) which is defined by

H(w) = exp(—%) —exp(—%)

being the difference of two Gaussians. This is again a basd-filter, which is plotted in
figure[@ (a) withwg = 40 andw; = 20 for a 256x 256 image. We can see by comparison with
figureld, that this will also take an approximate to a smoottegaacian of the image now with
two parametersvp which controls to the extend of the smoothing amdwhich controls the
steepness of the filter at low spatial frequencies, and tiisxtend of the edge enhancement.
The effect on an image is shown in figure 9 (b), being almosttidal to the Laplacian of
Gaussian filter in figurgl 8.
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Figure 9: Difference of Gaussian (DoG) filter and its effegtam image.

Fourier Transform of the difference of Gaussians, is agaliffarence of Gaussians, to in real
spaceijt can be shownhat the filter is given by

1 <_£)_iex (_i)
g P 203) 01 P 202

N N

2TTWo ! 2TTWq

h(r) =

where we have that

0o
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Figure 10: Difference of Gaussian filter in real space wigh= 3 ando; = 2.

whereN is the size of the image. This filter is shown foy = 3 ando; = 2 pixels in figurd_1D.
This filter is also known as the Marr-Hildrith filter after tiiest people to use it is computer
vision research and more informally as tMexican-Hatffilter for obvious reasons.

This is also shown in two-dimensions fhir= 128, wp = 20 andw; = 10 in Fourier space in
figure[I1 (a) and in real space in figlird 11 (b) whege~ 1 ando; ~ 2.

(a) DoG (Fourier) (b) Real Space

Figure 11: Difference of Gaussians filter in (a) Fourier alndréal space.

This is a very flexible edge detection filter which gives a geotbothed Laplacian even with
moderately hight amounts of noise. Itis particularly use@omputer Vision system for which
is was originally designed. Models of animal/human visyatem suggest that DOG filter is
fundamental to vision process as is essentially perfornmetthe retina before information sent
to brain for interpretation.

9.6 Fitting Models to Image

To analyse and interpret an image we need to fit or extract afsétnple shapes, the simples
beinglines Fromlinesit is then simple to extend to more complex shapes such asesjua
rectangles and polygons all of which are simple made of lirldse process can then be ex-
tended to consider circles and Ellipses. In this course lecamsider only the simples, being
lines

Before we fit any simple shape the first stage is the detectdbeseby first applying an edge
detector, for example the simpBobeland thresholding to obtain a binary edge images. As we
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have seen in figuriel 3 the resultant edges are genaratlgomplete but suffer from multiple
small breaks due to noise in the image.

9.6.1 Fitting a Straight Line
To fit a single straight line to data, we must fit
y=mx+h

wherem is the gradient andl is the intercept with thg-axis. This is a very common fitting
problem and the simplest id@ast squareéit. If we haven pointsy;, x;, being point on the line,
then if we define the square error as

e = Zl — (mx%+h))
and we get the standard solution by minimis&dy setting
0€? ae2

which has the effect of minimising theertical distance between the points and the line as
shown in figurd_IR.

y X5 1Y

Figure 12: Least square fit to a single line of data points.

The works very well for a single lindyut if there ismorethan one line, things get rather more
complicated and, as shown in figlird 13, the simple least squsamply gives the bestverage
line single line which is usually wrong. Least-Square onlyrks if you have asingleline, or
are able to segment out a segment of the image that containgla kne. We need to look for
something a lot more general than this.

9.7 Hough Transform

Consider the idea of Bne-to-pointtransform, as shown in figute1l14 where the image data in
X,y is transformed to an, h space, so that each line is transformed to a point. Then agspoi
are easy to detect, then a sharp peak imthiespace would correspond to a line of the form

y=mx+h
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Figure 14: Concept of kne-to-pointwhich a line is real space becomes point.

in the original image space.

If was have such &ransformand we have multiple lines, then as shown in figure 15 we then
simple get multiple points, one for each line. So if we canviesuch a transform we have
solves the general line extraction problem being able teaektany number of lines from an
image. However there is a problem with the scheme as it staimde neithem or h are
bounded, so that

Line || toxaxis = hnot defined
Line || toyaxis = m— o

which make the simple scheme computationally impracttualyever this can be modified.

y y:mlx+h1 h

/ H m, ,h
- _> ¢

Figure 15:Line-to-pointtransform of multiple lines results is multiple points.
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9.7.1 Polar Hough Transform

If alternatively we describe a line in polar coordinates W tvariablesr,8 as shown in fig-
ure[I®, where is the perpendicular distance to the image centre Guglangle that line
makes with the positive-axis. when, if we put the origin at the centre, then we have

N N
BV
0<O<m
so that bothr and® and bounded and much more practical to calculate.

N/2 A

-N/2 0 N/2

-N/2

Figure 16: Description of a line in polar coordinates.

Again is we have multiple line, then we will have multiple pts inr,8 space as shown in
figure[lT. This is the polar Hough transform for the detectiblines.
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Figure 17: Polar Hough transform for multiple line detentio

First think of implementation polar Hough Transforms as aeseof projections at various
angles using the same projection as in collimated beam toapbyg as shown in figuleJL8. If
this is then repeated at each angle to get the full Hough Teemsas shown for a rectangle
in figure[19. From this we see that the Hough transform is dgtidentical to the Radon
Transform used in tomography.

Now consider the mathematics of the Hough transform rath@nercarefully. We know that
the equation of a line at angBand positiorr is given by

r = XxcosB+ysind
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Figure 18: Polar Hough transform as a series of projections.

| o=m2
Line in Real Space
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Figure 19: Polar Hough of a rectangular object.

which can be written in more familiar notation as:

X
y= sin@ tan®

so to form the Hough Transform we need to integrate akach ling so in integral form as

H(r,e)://f(x,y)6(r—xcosG—ysinG)dxdy

which,as noted above, is tiRadon Transfornseen in tomography. This formulation allows us
to look at and alternative visualisation and implementatio

Look at the Hough Transform of a single point@tyo, so that themagebecomes
F(x,y) = 8(x— X0,y — Yo)
so that the Hough Transform of this is just,
H(r,8) = // O(X— Xo,Y — Yo)O(r —xcos8 — ysinB)dxdy
which if we apply the shifting properties offn, just gives that
H(r,0) = &(r —xocos — ypsingd)
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which is just a curve im, 0 space of the form
I = XpC0SO + ypSinO

which gives as shown in figuEe1l20.

H(r.9)
r

X0¢ yoL LS
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Figure 20: Hough transform of a single point.

If we now consider a line of points, then if the points forriree at a particularg, 8g, then each
coq) line crosses at one point, giving the 6p of the line as shown in figuieP1. So if the image
to be transformed is smallnumber of binary points, (edge detected image), implentiemntés
just:

e Start with blank image.
e For each edge point in the input imageld*“ cos-liné to Hough image.

This can be significantly speed-up by using a pre-calculitiek to return the cd$ and sir).

H(r, 9 ) r o

=y

0

Figure 21: Hough transform of a series of points that fornma.li

9.7.2 Example of Hough Transform to find lines

Firstly take the image, form th8obeland threshold to gdiroken linesvhere the roads are as
shown in figurd2R. This image shows the typical problem ofeedetection in the presence
of noise. The roads in the original image are clearly vistiole human observer, but when
detected automatically become broken and much less distiaie expected.
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(a) Image (b) Binary edges

Figure 22: Original image and binary thresholdSwbelffiltered to initially detect the edges.

Then form the Hough, with on the vertical axis an€l on the horizontal is shown in figutel23.
Here the lines show up a very distinct peaks where the peaksdive theequationsof the
lines in the image. This example shows that the Hough tramsfwork very well even with
rather noisy images are broken lines.

Figure 23: Hough transform of the binary edge image with thedh peaks identifying line in
the original image.

As can be seen from the above example, the Hough peak sharp, but is made-up from a set
of crossingcos-curvesthe shape of the peak will depend on the location as showgunefi?4.
The peak will have dutterflyshape where the extend of thengsis given by the length of
the line and the orientation given by the location of the lim¢he image. It isn principle
possible to extract the length of the line from the shape efoak, butn practisethis is very
numerically unstable.

To detect the peak in Hough space it is usually sufficient testmold and locate the centre. It
is also possible to filer to enhance thgtterflyshape, then threshold, or to use simjgplate
matching as discussed later. In practise this is actually fagdgyfor good low-noise images
giving a robust line detection scheme. It gives the equatiminines, but noend-points so
works well with simple images that contain good straighe$in It us particularly useful in
robot vision where you want to detect simple geometric dgjgor example to follow a track
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Figure 24: Shape of the Hough peak being a summation ¢f cosves.

or line. It deal with broken lines very well and is also reasbly efficiently if there are “few”
edge points.

There are however some problems, in that it becomes veryaidlaere are many edge points
as you find in complex natural scenes. This also results in #@mplex Hough space images
where are very difficult to analyse, and in particular shiok$ tend to gdbstin the noise. The
Hough space is also non-linear so you get different edgetaétiss in different directions and
in different parts of the image.

There are also a range of extensions of the Hough Transfamexample, circle and ellipse
detection byDouble Houghand image transform plus Hough for general shape detectlbn
of which are beyond this course; they also tend to be very coatipnally expensive.

9.8 Summary

In this section we have considered

First Order Differentials

Post Processing of Edge Images
Second Order Differentials.

LoG and DoG filters

Models in Images

Least Square Line Fitting

Cartesian and Polar Hough Transform

Mathematics of Hough Transform

© © N o 00 & W0 NP

Implementation and Use of Hough Transform
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