## **Topic 2: Imaging Properties Workshop Solutions**

# **Workshop Questions**

### 2.1 Fourier Transform Theory

See tutorial questions and solutions in *The Fourier Transform*, (What you need to know). Qustions 4, 7, 8 and 10 are particularly useful.

### Solution

See solutions in Fourier Booklet.

## 2.2 Linear Imaging

State all the conditions required of an imaging system for it be be described by

$$f(x,y) = h(x,y) \odot o(x,y)$$

where h(x, y) is the intensity point spread function.

### Solution

To be described by the convolution integral the imaging systems must be:

- 1. Linear: so that the image con be assumed to be a linear summation of it constituent parts. This also assumes that the *object* is two dimensional.
- 2. Space Invariant: so that the imaging properties are identical at all positions.
- 3. **Isoplanatic:** so that a simple shift in the object results in a simple shift in the image (scaled by the magnification of the optical system.)
- 4. Incoherent Illumination: so that the resultant image is the sum of the intensity PSF.



## 2.3 Use of the OTF

Optical imaging theory shows that the OTF of an ideal lens is given by:

$$H(w) = \frac{2}{\pi} \left[ \cos^{-1} \left( \frac{w}{w_0} \right) - \frac{w}{w_0} \sqrt{1 - \frac{w^2}{w_0^2}} \right]$$

where  $w^2 = u^2 + v^2$ , and  $w_0 = 1/\lambda F_{No}$ . If for an  $F_{No} = 8$  imaging system using green light, ideal image of the object in the image plane is

$$o(x,y) = 1 + \cos(2\pi ax)$$

calculate the detected image f(x,y) when (i) a = 100 mm<sup>-1</sup>, (ii) a = 200 mm<sup>-1</sup>, (iii) a = 300 mm<sup>-1</sup>

#### Solution

For a linear system, then

$$f(x,y) = h(x,y) \otimes o(x,y)$$

So in Fourier Space we have that:

$$F(u,v) = H(u,v) O(u,v)$$

We know the expression for H(u,v) so to get F(u,v) and hence f(x,y) we need to calculate O(u,v), which we can get from the shifting theorem to be:

$$O(u,v) = \mathcal{F} \{1 + \cos(2\pi ax)\}$$
  
=  $\mathcal{F} \{1\} + \frac{1}{2}\mathcal{F} \{\exp(\imath 2\pi ax)\} + \frac{1}{2}\mathcal{F} \{\exp(-\imath 2\pi ax)\}$   
=  $\delta(u) + \frac{1}{2}\delta(u-a) + \frac{1}{2}\delta(u-a)$ 

Add in the effect of the OTF, which is just a multiplication, then, noting that H(0) = 1 and that H(a) = H(-a) then,

$$F(u,v) = \delta(u) + H(a) \left[\frac{1}{2}\delta(u-a) + \frac{1}{2}\delta(u-a)\right]$$

we can now inverse Fourier Transform this to give

$$f(x,y) = 1 + H(a)\cos(2\pi ax)$$

which is the same for as the object but the contrast has been modified by the OTF. (The OTF is just the fidelity with which a grating with a particular frequency is passed by the optical system.)

Numerical examples: for visible light  $\lambda = 550$  nm so that

$$w_0 = 227 \text{mm}^{-1}$$

For a = 100 mm<sup>-1</sup> then H(100) = 0.719, so that

$$f(x, y) = 1 + 0.719\cos(2\pi ax)$$

For a = 200 mm<sup>-1</sup> then H(200) = 0.076, so that,

$$f(x, y) = 1 + 0.076\cos(2\pi ax)$$

so much lower contrast.

For a = 300 mm<sup>-1</sup> then H(300) = 0, so that,

$$f(x, y) = 1$$

so constant. No information about the grating is passed since it is above the bandwidth of the optical system.

## 2.4 The Spot Satellite

The Spot satellite has a ground resolution in the near infra-red (at  $1.3\mu$ m) of approximately 10 m from an orbit of 832 km. Assuming that this resolution limit is due to the point spread function of the imaging telescope estimate its diameter.

If the CCD sensors has a pixel size of  $10 \times 10 \mu$ m, estimate the focal length and diameter of the optical system.

Look up the technical information on the Spot satellite system, and see how close there estimates are.

#### Solution

If the satellite has a ground resolution of 10 m from and orbit of 832 km then it has *angular* resolution of

$$\theta_0 = \frac{10}{832 \times 10^3} = 1.20 \times 10^{-5}$$

The angular resolution of a telescope of diameter d is given by

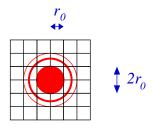
$$\theta_0 = \frac{1.22\lambda}{d} \quad \Rightarrow \quad d = \frac{1.22\lambda}{\theta_0}$$

so for visible light,  $\lambda = 550$  nm then the diameter of the telescope is 132 mm.

The radius of the point spread function is therefore,

$$r_0 = \frac{1.22\lambda f}{d} = f\theta_0$$

The pixel size should be smaller than the total size of the PSF which is  $2r_0 \times 2r_0$ .

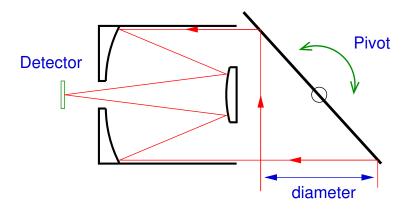


A reasonable scheme would be to have pixel size of  $10\mu$ m matched to  $r_0$ , so that

$$f = \frac{10\mu \text{m}}{1.2 \times 10^{-5}} = 833 \text{mm}$$

which gives the telescope a  $F_{No} = 6.3$ .

This is a reasonable system for a satellite, typically this is a twin mirror telescope of the type:



In a practical system the telescope would have somewhat wider aperture to allow more light into the system.