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Topic 2: Imaging Properties

2.1 Basic Image Formation
Before we can consider processing an image by a computer we must first understand the basis
of image formation, and in particular find a method of representing this by a mathematical
model. Most images are formed by an optical system, the simplest being a camera, with forms
a two-dimensional intensity image, f (x,y) of a three-dimensional intensity scene, o(x,y,z) as
shown in figure 1.

o(x,y,z)
T[]

f(x,y)

Figure 1: Basic schematic of image formation.

We can then write this as,
f (x,y) = T [o(x,y,z)]

where we describe the image formation process by the operator T [], which images the three
dimensional object to the two dimensional image plane, it is this plane that we will considering
as the input to our digital processing system. The full three-dimensional problem is not solv-
able, so we will start with the simpler case where the object in two-dimensional1 as shown in
figure 2, so we reformulate the imaging process as

f (x,y) = T [o(x,y)]
where T [] is an operator that take a two-dimensional intensity object and forms a two-dimensional
intensity image.

2.1.1 Linearity Condition

All practical imaging systems to be considered will be assumed to be linear so that the image
of a scene containing two separate objects, o1(x,y) and o2(x,y) of brightness α and β is just the
a weighted sum sum of the images of the two individual objects. given by

f (x,y) = T [αo1(x,y)+βo2(x,y)]
= αT [o1(x,y)]+βT [o2(x,y)]
= α f1(x,y)+β f2(x,y)

where f1(x,y) and f2(x,y) are the images of o1 and o2, as shown in figure 3 where we have
assumed that the two object to not overlap.

1This assumption will result in problems that we will consider later in the course when we look at true three-
dimensional objects.
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f(x,y)o(x,y)
T[]

Figure 2: Image formation with a two-dimensional object

+ =

f (x,y) f (x,y) f(x,y)1 2

Figure 3: Two non-overlapping images added together in a linear imaging systems.

We can now consider the input object o(x,y) to be a grid of closely packed points of different
brightness as shown in figure 4, then if the system in linear we can consider each point as a
separate object, and can form the image of each point separately, with the final image being
an intensity sum of the if the individual images. It is this property that allows us to built the
mathematical model. At the moment we will assume that these individual points are close
enough together to fully represent object and will revisit what we mean by close enough in the
next section when we consider sampling the detected image.

o(x,y)

Small Region

Figure 4: Sampled region of the image.

We can consider each point on the object as a two-dimensional δ-function, so a point at position
a,b of is represented by

δ(x−a,y−b)
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then using the shifting properties of δ-function, we can write

o(x,y) =
Z Z

o(s, t) δ(x− s,y− t)dsdt

which can also be through of as being convolution with δ-function which is a null operation.
We have that

f (x,y) = T [o(x,y)]
So substitution for o(x,y) from above, gives,

f (x,y) = T
[

Z Z

o(s, t) δ(x− s,y− t)dsdt
]

Now we can us the property that T [] is linear, so we can re-arrange the order of the integration
to give that

f (x,y) =

Z Z

o(s, t) T [δ(x− s,y− t)]dsdt

We can then write
T [δ(x− s,y− t)] = h(x,s,y, t)

which we can interpret as at being the image of a δ-function located at position s, t on the object,
as shown in figure 5, thus h(x,s,y, t) is known as the Point Spread Function.

Object Image

T[]

x

y.

s

t

δ h(x,s,y,t)Function

Figure 5: Image of a δ-function giving the point spread function.

2.1.2 Space Invariance Condition

Now if we further assume that the system is Space Invariant, so shape of h(x,s,y, t) does not
depend on s, t, they only give it location as shown in figure 6, then we can write

h(x,s,y, t) = h(x− s,y− t)

so we have that
f (x,y) =

Z Z

o(s, t) h(x− s,y− t)dsdt

which is just the convolution integral in two dimensions between the object o(x,y) and the point
spread function h(x,y), which we will write as

f (x,y) = o(x,y) � h(x,y)
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The important thing to notice is that h(x,y) is purely a property of the imaging system charac-
terised by the transformation T [], and it thus the same for all objects. Thus is we have system
where we either know, calculate or measure h(x,y), then we know how this system will image
any object, and more importantly, we can then digitally correct for this defect. It is this property
that is central to image reconstruction considered later in this course.

Object Image

T[]

.

s

t

x

y

h(s−x,t−y)δ −functions

Figure 6: Space invariance of the point spread function
.

This formulation assume unit magnification between the object and image planes. In most
system this is not the case, but can easily be corrected for by linear scaling the coordinates
of the image by the magnification of the imaging systems. This is again simply given by the
system geometry, being the ratio of the object and image distances2.

2.2 Analysis in the Fourier Domain
We have just seen that in normal, or real space, that the image is a convolution of the object and
the point spread function of the imaging system given by

f (x,y) = o(x,y) � h(x,y)

it is therefore natural to consider the system in Fourier space, since

F(u,v) = O(u,v) H(u,v)

where from the convolution theorem we have that

F(u,v) = F { f (x,y)} Fourier transform of the Image
O(u,v) = F {o(x,y)} Fourier transform of the Object
H(u,v) = F {h(x,y)} Fourier filter Function

for an imaging systems we have that h(x,y) is point spread function, and as seen above H(u,v)
acts like a Fourier space filter, and when derived from a point spread function, then,

H(u,v) → Optical Transfer Function

If we know either h(x,y) or H(u,v) we are able to fully characterise the system. For a practical
systems it is easiest to measure h(x,y) being the image of a star, and then calculate H(u,v)
digitally.

2See JH optics course for details.
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2.3 The Ideal Imaging System
If we consider the simple optical system of an ideal lens forming an image of a distant point
source, as shown in figure 7, then it can be shown3, that the the point spread function is given
by diffraction from a circular aperture, and is given by

h(x,y) =

[

J1(ακr)
ακr

]2

where we have that,

α = sinθ The numerical aperture
κ = 2π/λ λ is wavelength of light
r =

√

x2 + y2 Radial position
J1() First order Bessel function

h(x,y)θd

fDistant point object

Figure 7: Imaging of a distant point by an ideal lens.

It is useful to introduce the measure of FNo, being defined as

FNo =
f
d =

Focal Length
Diameter

so that for optical systems where θ is small4, we can take the approximation that

α ≈ d
2 f =

1
2FNo

so that the ideal point spread function of a system is given by it FNo and Wavelength of light
only.
The shape of the function (J1(x)/x)2 is shown in figure 8, being similar in shape to the sinc()2

function with a large central peak that contains 88% of the energy and a series of decreasing
secondary peaks with the zero occurring at

x0 = 3.832 = 1.22π
x0 = 7.016 = 2.23π
x0 = 10.174 = 3.24π
x0 = 13.324 = 4.24π

In two-dimensions we get circular central peak with a series of rings with the radius of the rings
given by the zeros of the Bessel function.

3Not part of this course, see Optics courses or standard optics textbooks for details
4True in most optical imaging system except microscopes.
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Figure 8: The shape of the function (J1(x)/x)2 and (J1(r)/r)2 as a two-dimensional surface.

Therefore for the ideal optical system above, the radius of the first zero will be given by

r0 = 1.22λFNo

so a system with FNo = 8 using green light of λ ≈ 550nm will result in the first zero being at
4.4µm. This initially looks small, but is comparable to the spacing on a modern CCD camera
chip, so is of direct relevance in digital imaging.
In the case of an ideal imaging system, the Optical Transfer Function also has an analytic
solution, and can-be-shown5 to be given by:

H(u,v) =
2
π



cos−1
(

w
v0

)

− w
v0

(

1−
(

w
v0

)2
)

1
2




where w =
√

u2 + v2 and

v0 =
d

λ f =
1

λFNo

which is the spatial frequency limit of the system, again for the ideal system, given only by its
physical size and the wavelength of the illumination used. The shape of H(u,v) is a tent shape
shown in figure 9 in one and two dimensional plotted for v0 = 100.
As we have seen above the Optical Transfer Function acts as a Fourier Filter, so modifies the
Fourier transform of the detected image. It is therefore a measure of the fidelity with which
each spatial frequency is passed, and of most significance is that

H(u,v) = 0 for u2 + v2 > v2
0

so there is a Spatial Frequency limit, which for the ideal systems is just given by the physical
dimensions of the system.

• Not all spatial frequencies passed with the same fidelity
5It is the auto-correlation of a circular aperture.
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Figure 9: Shape of the Optical Transfer Function of idea optical system with maximum fre-
quency of 100.

• Spatial Frequency limit even for ideal system, so all imaging systems band-width limited.

These properties allow us to represent an image in a computer and we will consider them again
when we come to sample an image in the next section.

2.4 The Non-ideal Imaging System
A real imaging system will have defects, or aberration, which reduce it performance and quality
of the formed image. If the aberration in known, then the aberrated point spread function can
be digitally generated. Two typical point spread functions are shown in figure 10 showing the
affect of (a) defocus and (b) mixed aberrations. The affect of convolving an image with the
digitally generated defocus point spread function is shown in figure 11 with the original image
is (a) and the digitally defocused in (b).

(a) (b)

Figure 10: Digitally calculated point spread function for a system system with a) defocus, and
b) mixed aberrations.

For real imaging system we are able to measure the point spread function since it image of a
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(a) (b)

Figure 11: (a) unmodified image, (b) digitally defocused with point spread function in fig-
ure 10.a

distant point. In addition it is also possible to measure the Optical Transfer Transfer but this
requires more optical background than expected in this course.
We well see towards the end of the course that this is the basic scheme for image reconstruction,
where if we know the PFS, then for the detected aberrated image we can reconstruct an ideal
image.

2.5 Validity of Assumptions
To allow use of Convolution Theorem we have assumed:
Linearity: Valid for most system, but problems with

1. 3-D scenes, where one object obscures the other.

2. Photographic film and video systems are frequently non-linear in intensity, but can usu-
ally be allowed in the processing

3. Saturation in sensors, particularly in CCD systems.

4. Low light level when the quantum nature of light makes the system non-linear in inten-
sity. This is more of a problem in statistical analysis, and will be considered again in the
section on noise models

Space Invariance: Valid for most good imaging systems, problems with:

1. Large telescopes, where the main aberration is coma which means the off-axis points
spread function is different as shown in figure 12.

2. Geometric distortions, for example perspective distortions, which we will consider in a
later section.

In general, most normal imaging systems, such as video cameras, digital cameras, remote sens-
ing satellite system, microscopes and low-power telescopes all obey these assumptions.
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(a) (b)

Figure 12: Typical point spread functions of a large telescope, (a) on-axis, ideal PSF, (b) off-
axis, PSF showing coma.

2.6 Summary
In the section we have covered:

1. Basics of image formation in optical system.

2. Used the assumptions of linearity and space invariance for form a Fourier based model
of imaging.

3. Considered the implications of this model for an ideal, perfect, lens in both real and
Fourier space.

4. Outlines the affect of aberrations and the resultant degraded imaging quality.

5. Outlined the validity of the underlying assumptions with reference to real imaging sys-
tems.
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Workshop Questions

2.1 Fourier Transform Theory
See tutorial questions and solutions in The Fourier Transform, (What you need to know). Qus-
tions 4, 7, 8 and 10 are particularly useful.

2.2 Linear Imaging
State all the conditions required of an imaging system for it be be described by

f (x,y) = h(x,y)�o(x,y)

where h(x,y) is the intensity point spread function.

2.3 Use of the OTF
Optical imaging theory shows that the OTF of an ideal lens is given by:

H(w) =
2
π

[

cos−1
(

w
w0

)

− w
w0

√

1− w2

w2
0

]

where w2 = u2 + v2, and w0 = 1/λFNo. If for an FNo = 8 imaging system using green light,
ideal image of the object in the image plane is

o(x,y) = 1+ cos(2πax)

calculate the detected image f (x,y) when (i) a = 100mm−1, (ii) a = 200mm−1, (iii) a =
300mm−1

2.4 The Spot Satellite
The Spot satellite has a ground resolution in the near infra-red (at 1.3µm) of approximately
10 m from an orbit of 832 km. Assuming that this resolution limit is due to the point spread
function of the imaging telescope estimate its diameter.
If the CCD sensors has a pixel size of 10×10µm, estimate the focal length and diameter of the
optical system.Optic

s

Look up the technical information on the Spot satellite system, and see how close there esti-
mates are.
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