Topic 8: Tomographic Imaging

8.1 Introduction

Most generally tomography is the reconstruction of an infag@ a series of projections, and
is most commonly used to image the internal structure of a-semsparent three-dimensional
object, often the human body, as shown in figure 1, where thé¢hfee-dimensional object
f(x,y,z) we form aslice at a givenz from a series of projections. From this basic system we
can then investigate the total three-dimensional intestratcture by taking a series slicesas
differentzas shown in figurel2, which can be combined digitally to forlathree-dimensional
representation of (X,y, z).

, fxy.2)

y
X -
/ \ , /<_ p(X)
I %_—/ ’

f(x.y)

Figure 1: Basic layout of a tomographic system to image & shecough a three-dimensional
object.
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Figure 2: Imaging of a three-dimensional object by takingi@es of slices.
This imaging scheme has many applications,

1. Medical x-ray: known asCT-scan where X-rays used to form three-dimensional image
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of parts of the human body, often of the head/brain as shovigume[3, but also other
part of the body, and even through the main torso.

2. Geological/Structural x-rax-ray analysis of rack samples and fossils either at real siz
or at high magnification. Internal analysis of mechanicahponents, for example crack
detection in aero engines.

3. Astronomical Imagestan-beam radio astronomy and astronomical interferomstare
the same mathematical background.

4. MRI and PET Medical Imaginguse the same mathematics of forming images from
projections.

Figure 3. CT-scan of a normal brain frcinttp://www.medical.philips.com

In all these applications, the data is not collected asragebut is collected as a set on one-
dimensional projections from which the image is digitatyyrhed. This reconstructed image is
then usually digitally processed and analysed, so in thesters digital processing occurs in
the image formation and subsequent processing.

8.2 Characterisation of System

Basic tomography, and in particular its most common fornra})(ttomography of the human
body, is a purely geometric projection scheme where we asghare is no diffraction. In this
case this is a very good assumption since the smallest slgtictterest are typically &> 2 mm,
while the X-rays have wavelengths of typically 10 nm. Givkage assumptions there are two
geometries, being

Collimated Beam : where the slice being images is illuminated by a thin coltedasheet
beam as shown in figufé 4 and the transmittance is detectedl@tycme-dimensional array of
detectors.

Fan beam : where the slice is illuminates by a thfan being expanding in one-dimension,
from a point as shown in figuld 5, where the transmittance tisatied by an one-dimensional
array of detectors forming the arc of a circle.

In both these geometries we form the projection of the trattante of the slide, and in both

cases the problem is to reconstrii¢x, y) from a series of projections taken at a range of angles.
Thefanbeam system is the more practical to fabricate and in thedbis lof the actual medical
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Figure 4: Collimated beam geometry where illuminated X-bam is collimated and the
detector is a flat one-dimensional array.
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Figure 5: Fan beam geometry where illuminated X-ray beam the shape of a fan and the
detector is a one-dimensional arc.

systems. However thallimatedbeam is much simpler to analyse and, as we will outline later,
the imaging properties of the two are almost idenicale will only consider the collimated
system in detail.

8.3 Collimated Beam Projection

We will consider the case of thin collimated beam of intensitly at angled incident on a
threedimensional object, where the two-dimensional slice ingla@e of the beam is given by
f(x,y), as shown in figurgl6.

If function f(x,y) in the plane of the beam is the x-ray absorption of the objeatenal, then
the intensity detected at positibim the detector plane from Ray in directigtis given by,

Qe(t) =1lo (1— /Rayf(x,y) ds)

where & is along the direction of the Ray, afds the angle of the beam, from which we can
form the normalised absorption of the object being,

Do (t) = /R foxy)s

Lapart from a geometric transformation.
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Figure 6: General geometry for collimated beam projection.

Now the ray in directior® that intersects the detector at posittamust have equation,
XCcosB+ysing =t
A ray, or line, in two dimensions can be represented Byfanction, being of the form
d(xcos +ysinG —t)

so beingzerowhen not on the line, and integratinguaity when on the line. The projection is
therefore the object(x,y), multiplied by theline and then integrated, which can be written as
a two-dimensional integral given by,

Po(t) = // f(X,y) 8(xcosB +ysin® —t) dxdy
which can then be formed for afyby, either:
1. Rotating the Object (problem if object is a person!!).
2. Rotating the Detector/Source system.

pe(t) can thus be considered advwao-dimensional transform of the data infot space and

is known as thaRadon Transfornof f(x,y) being the fundamental equation in tomographic
imaging. Tomographic imaging thus consists of collectingRadon Transfornof the slice,
and then digitally inverting the this transform to get th&elabsorptionf(x,y). It is this
problem we need to solve.

8.4 Fourier Inversion Theorem

First consider th&kadon Transfornmn the Fourier domain. Start with the case whére 3, so
the projection is along theaxis, so we have from the definition of tRadon Transfornthat,

pra(t) = [ [ Fxy)3ly—t) oy
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which from the shifting property of théfunction, we have,

pr2(t) = [ Fxt)x

being as expected a projection along xh&xis.
We know that the two-dimensional Fourier transformf¢x,y) is

F(u,v)://f(x,y) exp(—12r(ux+ vy)) dxdy

so withu = 0, we get can write the as,

F(O,v):/ {/f(x,y)dx} exp(—12mnvy) dy

we then the substitute for tHeand with a change of integration variable fronto t, we get
that,

F(0,v) = / Bry2(t) exp(—12mvt) dit

which is simply the Fourier Transform of the projection dathich is what we measure in
the tomographic system. Therefore the Fourier transformgof) gives oneline in the two-
dimensionaF (u,v) Fourier space, with fob = 11/2 is thevertical line with u = 0 as shown in
figure[d.
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Figure 7: Projection and relation in Fourier space wBenTt/2.

If we now define the one-dimensional Fourierft) at angled to be,

Po(W) — / Do(t) exp(12rwt) dt

Now consider a projection at angbewhich can be considered taking a projection of a rotated
version of the original slicd (x,y), denotes b¥f (t,s) where

t =xcosB+ysin@
S =ycos—xsind

so that the detected projection at an@lis simply given by

Po(t) :/f(t,s) ds
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which has one-dimensional Fourier transform of
Po(w) = / {/ f(t,s) ds} exp(—I12rwt) dt
which in (x,y) coordinates, gives,

Py(w) ://f(x,y) exp(—12rw(xcosB + ysing)) dxdy

Similarly we can express the two-dimensional Fourier tfams F (u,V) in polar coordinates
w, 0 by taking,
u=wcos8 and v=wsin@ with w=+/u2+2

to give functionF (w, 8), which gives is that
F(w,0) ://f(x,y) exp(—12rw(xcost +ysing)) dxdy

so we immediately have that
Po(w) = F(w,8) =F(u,v)

which is the Fourier transform of the slicé(x,y), which is what we want to measure. There-
fore if we measurgy(t), the projection at a range of angle, so forming

pe(t) 0<B<T

Then by taking the one-dimensional Fourier transform ah@&agve getPy(w), which we have
just shown, is~(u, V), which we can then take the two-dimensional inverse Fourérsform
to get the required (x,y) the absorption slice through the object. This is known astheier

Inversion Theorerand is the mathematical foundatiof tomographic imaging.

This can also be explained in terms of diagrams, where we $ee in figur€l7 that wheh=

/2 we get averticalline in the Fourier plan€& (u,v), and similarly if we rotate the direction of
projection to arbitrary anglé, then as shown in figuid 8, we get another line in Fourier space
now at angled. Therefore if we take a series of projection b= 0 — 11, then we carfill-in,

or sampleF (u,v) over allu,v. We can then inverse transform to get the requifédy), the
absorption of the slice.

8.5 Interpolation Problem

The biggest problem with collecting tomographic data igiipblation, since we collegig(t)
at sample intervals dit andAB, and so in Fourier space we are effectively sampling on arpola
grid as shown in figurgl 9 with intervals,

Aw = L and A6

~ NAt

whereN is the number of elements in the linear array used to copg@t). To take the inverse
two-dimensional discrete Fourier transform to form the lfineage we need sampldel(k,|)
data on a regular sampled sampled grid which must be donetéxpaoiation from theAw, A©
samples.

2There are other way to formulate tomographic imaging, bey #re actually mathematically equivalent to the
Fourier Inversion Theorem.
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Figure 8: Projection and relation in Fourier space at aabyt6.

F(u,v) & i

Figure 9: Polar sampling in Fourier space.

This is the major difficult with this interpolation is that v at low spatial frequencies, near
the centre of (u,Vv) there are many samples, at higher spatial frequencieAwh&6 samples
are sparcer, which results in undersampling, and hencsiadjaat high spatial frequencies.
This results in high frequency noise in the reconstrcutgiming for example the straight line
patterns in the scan of a sheeps neck in figufe 10.(a). In toapbge images, where for speed
this inetrpolation is usually either zero-order, beingnestineighbour, or first order being bi-
linear interpolation, and while more complex interpolatschemes can help to reduce some of
the effects, typically some reconstrcuion artifacts remai

Since we are filling up the Fourier platine-at-at-timethen if we are unable to scan over ther
whole 0— ttangular range there will be parts of the Fourier plane thareft undetermined,
for example, figuréJ1 show the Fourier space when only-a fi/2 angular range has been
used. The effect is simular to a Fourier space filter with kéaof the black region of Fourier
plane.
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Figure 10: CT Reconstrcution of a sheeps neck (a) real smamomstrcution, (b) modulus of
the Fourier transform.

(@) o | (b)

Figure 11: Effect of limited angle of data collection ins Eurier space, (b) real space recon-
struction.

8.6 Filtered Back Projection

An equivalent scheme for tomographic reonstructiofiliered back projectiorwhere the re-
constuction is formed by processing the detected projestig(t) one at a time anddding
then to the reconstcrution in real space. This scheme haadwanages over théourier In-

verseionscheme above, is that

1. Image is formed iseal timeduring the scan so rather than having to wait for all the data
to be collected. Therefore faulty scans, for example whieeepatient moved, can be
aborted without subjecting the parient to the full radiatiose.

2. Removes the need for the final , computationally expensive-dimensional Fourier
transfornf.

Due in particualr to (1), this is the perfered ronstructidgoaithum used in medical tomogra-
phy, it is also the basis for the more complex reconstrcutiom the more practicdian-beam
geometry.

3with fast modern computer this has become less of an issue.

School of Physics DIA(U01358) and TOIP(P00809) Revised: 20 July 2006



If we have o
f(x,y) :/ / F (w, 0) exp(12rw(xcosB + ysinB) ) wawd6
o Jo

Now if f(x,y) is real, then due to symmetry condition of the FFT, we havg tha
F(w,0+T1) =F(—w,0)

we can change the limits of the integration if the inversasfarm to get that
2] U
F(xy) = / / F (w, 8) exp(12nw(xcosB + ysing)) [w|dw de
—00J0

Now Consider a rotated coordinate system at afgk® that
t = xcosB+ysin@

we get the simpler expression that:

T ()
f(x,y) = / {/ Po (W) |w| exp(12rwt) dw| dB
0 —o0
where we note from previous that we have that,
Po(w) = F(w,8) =F(u,v)

wherePs(w) is the 1-D Fourier Transform of the projection at an§leNow define iltered
projection of

go(t) = /m Py (W) |w| exp(12rwt) dw

which, from the Convolution Theorem, we have have that:

de(t) = pe(t) ©h(t)

whereh(t) is the filter function
h(t) = F {Iwl}

which is equivalent to High Pass filtering the one-dimenaigrojection. the final image is
given by

Tt
F(xy) = /0 Go(xCOSO -+ ysin®)de

Note : function |w| is discontinuous aw = 0 so ¥ {|w|}, in the strict sense, does not exist,
however the Digital approximation is calculable.

This scheme is implemented as outlined in fidude 12 wheredoh anglé the one-dimensional
collected datgg(t) is colvolved withh(t) to forms thefiltred porjectiongg(t). This is then
back-projectecacross the reconstruction, so being added (tay) at angleB, so biulting up
the imageprojection at a timeIn practice this operation is frequently combined with Ipass
filtering to prevent noise dominating the reconstructionatiematics of both reconstruction
techniques are identical, and get same problem of nonflseapling in Fourier space but its
computationally simpler simce no final two-dimensional Feutransform is neededs for lend
it self tonear real-timeuse.
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Figure 12: Schamtic layout of filter back-projection.

8.7 Typical Images

A typical tomographic result is show in figufel13 showing steecthrough a human head
with an injury on the right side. In such an image the bonwlite which corresponds to
low absorptionwhile the water rich tissue of the brain légh absorptionand is shown up
as black. Imaging of the bone is clearly very easy being végh bontrast, but the imternal
brain strcuture is much lower constrast and is typicallyge@rocessed, for example median
filtered to reduce the noise followed by histogram equabsato enhance the contrast, before
the image is used clinically.

Figure 13: Typical section through a human head showing janyin

If a whole series of scans are taken at different planes asrshofigure[14 (a) & (b) showing
a scan twards to the top and middle of the head respectivedy & full three-dimensional
reconstrcution of the scull can be formed as shown in fifuféc)l4 Here the outline of the
bonehas been extracted from the slices by thresholding, andttigeslices aligned digitally to
form the three dimensional model which can then be digitaltsgted using computer graphics.
This type of imaging make extensive use of digital procesbioth to form each slice, but then
also to process each slice to form the final three-dimentipdel.
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(a) Top (b) Middle (c) Full three dimensional reconstrcatio
Figure 14: Full three-dimensional reconstrcution of thadstruction of a human head, from
Www.picker.com.

8.8 Practical system configurations

To implementcollimated beamomography system we ideally need to produce a thin colli-
mated beam beam of x-rays. This is almost impossible to m@dince there are no effective
or efficient beam shaping lenses that operate in the x-ragmedhe only truecollimated beam

is shown in figugél5 where there is a single x-ray source atettte which make a single
intensity measure along a single line. The x-ray source atectbr are then scanned at the
same speed making a series of measurements at one angles-rdyneource and detetcor sys-
tem are then rotatwd about the obejct and the scan repeategisyistem is very slow to collect
data and is mechanically complex with a two-dimensionahsdéore importantly only a tiny
fraction of the x-rays are detected and form part of the imgglystem; most of the rest being
lost in the sample. Such system are not useful for imageveslstems where it is essentalil
to minimise the x-ray dosage, but is used for very dense asdrgdve samples such as rocks
and fossels which can be subjected to extended x-ray radiaiithout damage.

X7tay source Single Detector

Object
Rotate System

Figure 15: Point-by-point tomographic collection system.

The pratcical system is to illuminate withlime source and collect data from a linear array
detectors which gives a whole series of ray in parallel farabeangeometry. There are two
viable geometries shown in figultel16, these be2ggiangular raysvhere the detetcor forms
the arc of a circle centred on the source slit. The detectgsl aee therefore seperated by an
equal angle. The alternative geometry is to have a flat datectay, known agquispaced
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detectorswvhere there the ray angular separation now depends ongousill modern tomog-
raphy systems usequiangular rayswith typically, the source and detecor arc rotated about
the object.

Equiangular Rays Equispaced Detectors

Slit g
Source

), L
1-D Arc 1-D Linear
Detector Detector

Figure 16: The two fan beam geometries, equiangular rayguspaced detectors.

A layout of a typical conventional scanning system is showfigure[1T (a) where the X-ray
source and curved detector array are rotated about thetpbypically a part of the human
bod)ﬂ. To for a complete three-dimensional image the subjectan thoved, on a translation
table,one slide at a timehrough the machine and the scan repeated for each slics.isThi
complex mechanical system and is relatively slow, detgatime fan beam projection at a time.
The fasterspriral scansystem shown in figude17 (b) has been recently developedathere
is a complete 360ring of detectors and multiple x-ray sources are rotatelenthe ring. Each
source is in a diffent plane, so for three sources this systeages threslicesin one rotation.
The subject is then moved through the system on a continjiousl/ing table with each scan
forming a spiral pattern. This system is much faster, butss emnuch more expensive due to
the need for multiple x-ray sources and a complete detestgr The data is also in a more
complex format so needing greater computer power to prateskdern sytsem of the spiral
format can complete a scan of the human head in about BB seconds.

(a) Conventional Scan (b) Spiral scan

Figure 17: Scanning geometry used in commercial tomogecagaanners, (a) conventional scan
and (b) newer high speed sprial scan.

4For scanning of inert samples it is easier to rotate the obgeler than the source and detector array.
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8.9 Fan Beam Reconstuction

Tomographic reconstruction in fan beam geometry is congiytidentical to the collimated
beam. The geometry of the fan beam system is shown in fl[gureSb8when the source is
rotated by angl@ with respect to the horizontal then the data collected is

rp(y)

wherey is in the range-yym — ym being limited by the length of the array. This data can then
be collected for a whole range Bfbetween 0— 21t

Figure 18: Geometry of the fan beam tomography system.

The reconstrcution can then be implemented by filtered beajlegtion combined with a simple
coordinate transformatifinand the reconstruction becomes, for each projection,

1. Scale the collectegs(y) by cogy).

2. Convolve with a one-dimensional filter, to form a filteregrsion ofrg(y), denoted at

Sa(Y)-
3. Backproject the data back across the rays of the equianfgul as shown in figuifeJL9

which is repeated for all anglgs now in the range 6- 21tto form reconstructiorf(x, y). With
modern computer system this type of reconstruction is easitformed inreal timewith the
scan speed being limited by the movement of the mechanist sy This system shown the
aberrations are the collimated beam system, the main probéng interpolation errors which
now occur as the filteresh(y) is backprojected across the reconstruction at a limitegeraf
angles.

The alternative scheme is to collect the projection dafg) in thefan-beamgeometry and then
noting that each rayg(y) is equivalent to a rayg(t) is the collimated beam geometry with

06=p—y and t=Dtany

SDetails of this are beyond this coures.
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Figure 19: Backprojection in fan beam geometry.

whereD is the distance from the slit source to the centre of the algsshown in figuré18.
Therefore the projections collectedfi@n-beangeometry can beay sortedto give the equiv-
alentpg(t) projections which can then be reconstrcuted by either thei€oinversion or col-
limated back projection scheme. In practice this schemeekastly the same interpolation
errors as the fan-beam back projection and the additiomapatationally costly sorting of the
projection, so in pratcice does not have any advantage,saadtaully more computationally
expensive.

There are also a range of other more complex schemes whiath eneFourier step by foru-

lating the whole reconstruction as a set of coupled linearagmpns that are then solved by
minimisation. These schemes are computationally much regpensive and not used rou-
tinely in scanner systems but as an alternative scheme wthadasd filtered backprojection
gives unexpected results.

8.10 Other Tomographic Imaging Systems

There are a range of other tomographic imaging systems usa@dynin medical applications
but also in radio astronomy where the reconstrcution fromraldeam radio telescope is identi-
cal to collimated beam projection with the image formed byri&r inversion. In astronomical
radio interferometry, which consists of taking coheremnsil from two movable radio tele-
scopes theémageis also collected in Fourier space barte spatial frequency at a tinteeing
given by the separation between the telescopes. Again thgdans formed by Fourier inversion
but now with a very sparcely sampled Fourier space.

The main tomographic systems are used in medical imagiregfvilo most common being
magnetic resonance imagimgdpositorn emission tomographyhich are outlined in the next
two sections.

8.10.1 Magnetic Resonance Imaging

This system used the nuclear magnetic resonance of pratdryslrogen as an imaging system.
The proton spins are aligned with a very large magnetic fiséderal Tesla, and when then
decay they give out small amounts of eletro-magnetic ramtidhat cen be detetced by exetrnal
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coils. This has the effect of measureing local water coBtéFtie location of the measuresment
is controlled by varying the gradient of the magnetic fieldd aesults on the meausuremants
being averaged along line through the object, so its is &ely a tomographic technique using
the same reconstrcution scheme as discussed for x-ray ¢empmography. Typical MRI
images are shown in figutel20 which can be used to give hoatontvertical scan, which as
fro x-ray images, can then be formed into full three-dimenal models by further processing.

(a) Horizontal Scan (b) Vertical scan

Figure 20: Typical MRI images of the human head, (a) horiabséction, and (b) vertical
section.

MRI images shown excellent detail of soft tissue being btiterapoor contrast in bone which
has a low water content. It is therefore a complementaryniecies to x-ray tomography, and is
also muctsaferfor the patient which no know radiological effect. Howeuee data collection
is much slower and the initial cost and running cost of theaseaare many times that of the
X-ray system .

8.10.2 Positron Emission Tomography

In this system the subject is injected with short lived radaiope, usuall95d?] , which decays
by positron emission, which in turn annihilates with aloelgictron to givéwo y-rays of energy
511 Mev travelling in opposite directions. If the subjedtie surrounded by a ring of detectors
as shown in figure21 (a), then a simultaneous detection of @pgrays of the correct energy
in detectorsA andB means that & + e~ annihilation occured on the line betweén— B.
When data is collected for a long period it will thus give #heeragenumber of annihilations
along the line between any two detectors, which is again tpaphic data collection. This
can then be reconstrcuted to form a slice image as shown iref@li (b) shown annihilation
activity. In this scheme the oxygen isotope accumulatesriteetive regions where cell are
taking up oxygen, so if applied to the brain, will give a imagjdrain activity. If the system is
run in real time it can therefore let you see thrain thinking

This scheme has a number of technical problems, maininguindar of annihilations is small,
so collected data is severly corrupted by Poisson noisehwigisults is a rather noise reconstr-
cution. The image resolution is also fundamentally limibgdhe mean free path of the emitted

5The decay time are also influenced by their local environmehich allows the imaging system to be tuned
to measure different local parameters.
711c, 13N and®F are also possible but less commonly used.
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(a) PET system (b) Typical image
Figure 21: Layout and typical image from positron emissmmagraphy (PET) systems.

positron before the™ +e~ annihilation occurs. In the brain this is typically-2 2 mm, so giv-
ing an effective resoluition limit of about 2 mm, being aboutO poorer that the best modern
x-ray or MRI systems.

The other major technical problem is tH&D does not occur naturally and has a half-life of
only 20 minutes. It therefore has to be produced, by borbardmof water in a particle acceler-
ator, injected into the subject and the image taken in tyigi@® — 30 minutes. This means a
particle accelatator has to locateext doorto the scanner and typically dedicated to the imag-
ing system witht>O prepared for each scan. This make whole process extreragpgnsive
bot to install and run; it also needs a very large facility tmke the particle accelerator. As a
result there are only a handful systems, currently four antnd.

9 Summary

This section contains a description of tomographic imaging the basic schemes used to form
images.

e Basic concepts of tomographic imaging.

e Collimated beam projection.

e Fourier inversion theorem

¢ Interpolation problems and issues.

e Filtered back projection for collimated beam reconstrtti
e Pratcical systems and problems.

e Fan beam reconstrcution.

e Other tomographic imaging systems.

8as of 2003
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