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Topic 8: Tomographic Imaging

8.1 Introduction

Most generally tomography is the reconstruction of an imagefrom a series of projections, and
is most commonly used to image the internal structure of a semi-transparent three-dimensional
object, often the human body, as shown in figure 1, where the for three-dimensional object
f (x,y,z) we form asliceat a givenz from a series of projections. From this basic system we
can then investigate the total three-dimensional internalstructure by taking a series ofslicesas
differentzas shown in figure 2, which can be combined digitally to for a full three-dimensional
representation off (x,y,z).
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Figure 1: Basic layout of a tomographic system to image a slice through a three-dimensional
object.
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Figure 2: Imaging of a three-dimensional object by taking a series of slices.

This imaging scheme has many applications,

1. Medical x-ray:known asCT-scan, where X-rays used to form three-dimensional image
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of parts of the human body, often of the head/brain as shown infigure 3, but also other
part of the body, and even through the main torso.

2. Geological/Structural x-rayx-ray analysis of rack samples and fossils either at real size,
or at high magnification. Internal analysis of mechanical components, for example crack
detection in aero engines.

3. Astronomical Images:fan-beam radio astronomy and astronomical interferometryshare
the same mathematical background.

4. MRI and PET Medical Imaging:use the same mathematics of forming images from
projections.

Figure 3: CT-scan of a normal brain fromhttp://www.medical.philips.com

In all these applications, the data is not collected as animagebut is collected as a set on one-
dimensional projections from which the image is digitally formed. This reconstructed image is
then usually digitally processed and analysed, so in these system digital processing occurs in
the image formation and subsequent processing.

8.2 Characterisation of System

Basic tomography, and in particular its most common form, X-ray tomography of the human
body, is a purely geometric projection scheme where we assume there is no diffraction. In this
case this is a very good assumption since the smallest objects of interest are typically 1→ 2mm,
while the X-rays have wavelengths of typically 10 nm. Given these assumptions there are two
geometries, being

Collimated Beam : where the slice being images is illuminated by a thin collimated sheet
beam as shown in figure 4 and the transmittance is detected by aflat one-dimensional array of
detectors.

Fan beam : where the slice is illuminates by a thinfan being expanding in one-dimension,
from a point as shown in figure 5, where the transmittance is detected by an one-dimensional
array of detectors forming the arc of a circle.

In both these geometries we form the projection of the transmittance of the slide, and in both
cases the problem is to reconstructf (x,y) from a series of projections taken at a range of angles.
Thefanbeam system is the more practical to fabricate and in the the basis of the actual medical
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Figure 4: Collimated beam geometry where illuminated X-raybeam is collimated and the
detector is a flat one-dimensional array.
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1−D ArcDetector
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Source

Figure 5: Fan beam geometry where illuminated X-ray beam is in the shape of a fan and the
detector is a one-dimensional arc.

systems. However thecollimatedbeam is much simpler to analyse and, as we will outline later,
the imaging properties of the two are almost identical1, we will only consider the collimated
system in detail.

8.3 Collimated Beam Projection

We will consider the case of athin collimated beam of intensityI0 at angleθ incident on a
threedimensional object, where the two-dimensional slice in theplane of the beam is given by
f (x,y), as shown in figure 6.

If function f (x,y) in the plane of the beam is the x-ray absorption of the object material, then
the intensity detected at positiont in the detector plane from Ray in directions is given by,

Qθ(t) = I0

(

1−
Z

Ray
f (x,y)ds

)

where ds is along the direction of the Ray, andθ is the angle of the beam, from which we can
form the normalised absorption of the object being,

pθ(t) =
Z

Ray
f (x,y)ds

1apart from a geometric transformation.
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Figure 6: General geometry for collimated beam projection.

Now the ray in directionθ that intersects the detector at positiont must have equation,

xcosθ+ysinθ = t

A ray, or line, in two dimensions can be represented by aδ-function, being of the form

δ(xcosθ+ysinθ− t)

so beingzerowhen not on the line, and integrating tounitywhen on the line. The projection is
therefore the objectf (x,y), multiplied by theline and then integrated, which can be written as
a two-dimensional integral given by,

pθ(t) =

Z Z

f (x,y)δ(xcosθ+ysinθ− t)dxdy

which can then be formed for anyθ by, either:

1. Rotating the Object (problem if object is a person!!).

2. Rotating the Detector/Source system.

pθ(t) can thus be considered as atwo-dimensional transform of the data intoθ, t space and
is known as thatRadon Transformof f (x,y) being the fundamental equation in tomographic
imaging. Tomographic imaging thus consists of collecting the Radon Transformof the slice,
and then digitally inverting the this transform to get the slice absorptionf (x,y). It is this
problem we need to solve.

8.4 Fourier Inversion Theorem

First consider theRadon Transformin the Fourier domain. Start with the case whereθ = π
2, so

the projection is along thex axis, so we have from the definition of theRadon Transformthat,

pπ/2(t) =
Z Z

f (x,y)δ(y− t)dxdy
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which from the shifting property of theδ-function, we have,

pπ/2(t) =
Z

f (x, t)dx

being as expected a projection along thex-axis.

We know that the two-dimensional Fourier transform off (x,y) is

F(u,v) =
Z Z

f (x,y) exp(−ı2π(ux+vy)) dxdy

so withu = 0, we get can write the as,

F(0,v) =
Z

[

Z

f (x,y)dx

]

exp(−ı2πvy)dy

we then the substitute for the[] and with a change of integration variable fromy to t, we get
that,

F(0,v) =
Z

pπ/2(t) exp(−ı2πvt)dt

which is simply the Fourier Transform of the projection datawhich is what we measure in
the tomographic system. Therefore the Fourier transform ofpθ(t) gives oneline in the two-
dimensionalF(u,v) Fourier space, with forθ = π/2 is thevertical line with u = 0 as shown in
figure 7.
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Figure 7: Projection and relation in Fourier space whenθ = π/2.

If we now define the one-dimensional Fourier ofpθ(t) at angleθ to be,

Pθ(w) =

Z

pθ(t) exp(ı2πwt)dt

Now consider a projection at angleθ which can be considered taking a projection of a rotated
version of the original slicef (x,y), denotes byf (t,s) where

t = xcosθ+ysinθ
s = ycosθ−xsinθ

so that the detected projection at angleθ is simply given by

pθ(t) =

Z

f (t,s)ds
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which has one-dimensional Fourier transform of

Pθ(w) =

Z

[

Z

f (t,s)ds

]

exp(−ı2πwt)dt

which in (x,y) coordinates, gives,

Pθ(w) =
Z Z

f (x,y) exp(−ı2πw(xcosθ+ysinθ)) dxdy

Similarly we can express the two-dimensional Fourier transform F(u,v) in polar coordinates
w,θ by taking,

u = wcosθ and v = wsinθ with w =
√

u2+v2

to give functionF(w,θ), which gives is that

F(w,θ) =
Z Z

f (x,y) exp(−ı2πw(xcosθ+ysinθ)) dxdy

so we immediately have that
Pθ(w) = F(w,θ) = F(u,v)

which is the Fourier transform of the slice,f (x,y), which is what we want to measure. There-
fore if we measurepθ(t), the projection at a range of angle, so forming

pθ(t) 0≤ θ ≤ π

Then by taking the one-dimensional Fourier transform at each θ, we getPθ(w), which we have
just shown, isF(u,v), which we can then take the two-dimensional inverse Fouriertransform
to get the requiredf (x,y) the absorption slice through the object. This is known as theFourier
Inversion Theorem, and is the mathematical foundation2 of tomographic imaging.

This can also be explained in terms of diagrams, where we haveseen in figure 7 that whenθ =
π/2 we get avertical line in the Fourier planeF(u,v), and similarly if we rotate the direction of
projection to arbitrary angleθ, then as shown in figure 8, we get another line in Fourier space
now at angleθ. Therefore if we take a series of projection forθ = 0→ π, then we canfill-in ,
or sample,F(u,v) over allu,v. We can then inverse transform to get the requiredf (x,y), the
absorption of the slice.

8.5 Interpolation Problem

The biggest problem with collecting tomographic data is interpolation, since we collectpθ(t)
at sample intervals of∆t and∆θ, and so in Fourier space we are effectively sampling on a polar
grid as shown in figure 9 with intervals,

∆w =
1

N∆t
and ∆θ

whereN is the number of elements in the linear array used to collectpθ(t). To take the inverse
two-dimensional discrete Fourier transform to form the final image we need sampledF(k, l)
data on a regular sampled sampled grid which must be done by interpolation from the∆w,∆θ
samples.

2There are other way to formulate tomographic imaging, but they are actually mathematically equivalent to the
Fourier Inversion Theorem.
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Figure 8: Projection and relation in Fourier space at arbitrary θ.

F(u,v) ∆θ
t∆

Figure 9: Polar sampling in Fourier space.

This is the major difficult with this interpolation is that while at low spatial frequencies, near
the centre ofF(u,v) there are many samples, at higher spatial frequencies the∆w,∆θ samples
are sparcer, which results in undersampling, and hence aliasing at high spatial frequencies.
This results in high frequency noise in the reconstrcution,giving for example the straight line
patterns in the scan of a sheeps neck in figure 10.(a). In tomographic images, where for speed
this inetrpolation is usually either zero-order, being nearest neighbour, or first order being bi-
linear interpolation, and while more complex interpolation schemes can help to reduce some of
the effects, typically some reconstrcuion artifacts remain.

Since we are filling up the Fourier planeline-at-at-timethen if we are unable to scan over ther
whole 0→ π angular range there will be parts of the Fourier plane than are left undetermined,
for example, figure 11 show the Fourier space when only a 0→ π/2 angular range has been
used. The effect is simular to a Fourier space filter with blanks of the black region of Fourier
plane.
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(a) (b)

Figure 10: CT Reconstrcution of a sheeps neck (a) real space reconstrcution, (b) modulus of
the Fourier transform.

(a) (b)

Figure 11: Effect of limited angle of data collection ins (a)Fourier space, (b) real space recon-
struction.

8.6 Filtered Back Projection

An equivalent scheme for tomographic reonstruction isfiltered back projectionwhere the re-
constuction is formed by processing the detected projections pθ(t) one at a time andadding
then to the reconstcrution in real space. This scheme has twoadvanages over theFourier In-
verseionscheme above, is that

1. Image is formed isreal timeduring the scan so rather than having to wait for all the data
to be collected. Therefore faulty scans, for example where the patient moved, can be
aborted without subjecting the parient to the full radiation dose.

2. Removes the need for the final , computationally expensive, two-dimensional Fourier
transform3.

Due in particualr to (1), this is the perfered ronstruction algorithum used in medical tomogra-
phy, it is also the basis for the more complex reconstrcutionfrom the more practicalfan-beam
geometry.

3With fast modern computer this has become less of an issue.
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If we have

f (x,y) =

Z ∞

0

Z 2π

0
F(w,θ)exp(ı2πw(xcosθ+ysinθ))wdwdθ

Now if f (x,y) is real, then due to symmetry condition of the FFT, we have that,

F(w,θ+π) = F(−w,θ)

we can change the limits of the integration if the inverse transform to get that

f (x,y) =

Z ∞

−∞

Z π

0
F(w,θ)exp(ı2πw(xcosθ+ysinθ)) |w|dw dθ

Now Consider a rotated coordinate system at angleθ, so that

t = xcosθ+ysinθ

we get the simpler expression that:

f (x,y) =

Z π

0

[

Z ∞

−∞
Pθ(w)|w|exp(ı2πwt)dw

]

dθ

where we note from previous that we have that,

Pθ(w) = F(w,θ) = F(u,v)

wherePθ(w) is the 1-D Fourier Transform of the projection at angleθ. Now define afiltered
projection of

qθ(t) =
Z ∞

−∞
Pθ(w)|w|exp(ı2πwt)dw

which, from the Convolution Theorem, we have have that:

qθ(t) = pθ(t)⊙h(t)

whereh(t) is the filter function
h(t) = F {|w|}

which is equivalent to High Pass filtering the one-dimensional projection. the final image is
given by

f (x,y) =
Z π

0
qθ(xcosθ+ysinθ)dθ

Note : function |w| is discontinuous asw = 0 soF {|w|}, in the strict sense, does not exist,
however the Digital approximation is calculable.

This scheme is implemented as outlined in figure 12 where for each angleθ the one-dimensional
collected datapθ(t) is colvolved withh(t) to forms thefiltred porjectionqθ(t). This is then
back-projectedacross the reconstruction, so being added tof̂ (x,y) at angleθ, so biulting up
the imageprojection at a time. In practice this operation is frequently combined with lowpass
filtering to prevent noise dominating the reconstruction. Mathematics of both reconstruction
techniques are identical, and get same problem of non-linear sampling in Fourier space but its
computationally simpler simce no final two-dimensional Fourier transform is neededs for lend
it self tonear real-timeuse.
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Figure 12: Schamtic layout of filter back-projection.

8.7 Typical Images

A typical tomographic result is show in figure 13 showing s section through a human head
with an injury on the right side. In such an image the bone iswhite which corresponds to
low absorptionwhile the water rich tissue of the brain ishigh absorptionand is shown up
as black. Imaging of the bone is clearly very easy being very high contrast, but the imternal
brain strcuture is much lower constrast and is typically image processed, for example median
filtered to reduce the noise followed by histogram equalisation to enhance the contrast, before
the image is used clinically.

Figure 13: Typical section through a human head showing an injury

If a whole series of scans are taken at different planes as shown in figure 14 (a) & (b) showing
a scan twards to the top and middle of the head respectively, then a full three-dimensional
reconstrcution of the scull can be formed as shown in figure 14(c). Here the outline of the
bonehas been extracted from the slices by thresholding, and thenthe slices aligned digitally to
form the three dimensional model which can then be digitallyrotated using computer graphics.
This type of imaging make extensive use of digital processing both to form each slice, but then
also to process each slice to form the final three-dimensional model.
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(a) Top (b) Middle (c) Full three dimensional reconstrcution.

Figure 14: Full three-dimensional reconstrcution of the bone struction of a human head, from
www.picker.com.

8.8 Practical system configurations

To implementcollimated beamtomography system we ideally need to produce a thin colli-
mated beam beam of x-rays. This is almost impossible to produce since there are no effective
or efficient beam shaping lenses that operate in the x-ray region. The only truecollimated beam
is shown in figuge 15 where there is a single x-ray source and detector which make a single
intensity measure along a single line. The x-ray source and detector are then scanned at the
same speed making a series of measurements at one angle. The x-ray source and detetcor sys-
tem are then rotatwd about the obejct and the scan repeated. This system is very slow to collect
data and is mechanically complex with a two-dimensional scan. More importantly only a tiny
fraction of the x-rays are detected and form part of the imaging system; most of the rest being
lost in the sample. Such system are not useful for images of live systems where it is essentail
to minimise the x-ray dosage, but is used for very dense and absortpive samples such as rocks
and fossels which can be subjected to extended x-ray radiation without damage.

X−ray source Single Detector

Object

Rotate System

Figure 15: Point-by-point tomographic collection system.

The pratcical system is to illuminate with aline source and collect data from a linear array
detectors which gives a whole series of ray in parallel in afan beamgeometry. There are two
viable geometries shown in figure 16, these beingequiangular rayswhere the detetcor forms
the arc of a circle centred on the source slit. The detected rays are therefore seperated by an
equal angle. The alternative geometry is to have a flat detector array, known asequispaced
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detectorswhere there the ray angular separation now depends on position. All modern tomog-
raphy systems useequiangular rays, with typically, the source and detecor arc rotated about
the object.
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Figure 16: The two fan beam geometries, equiangular rays or equspaced detectors.

A layout of a typical conventional scanning system is shown in figure 17 (a) where the X-ray
source and curved detector array are rotated about the object, typically a part of the human
body4. To for a complete three-dimensional image the subject is then moved, on a translation
table,one slide at a timethrough the machine and the scan repeated for each slice. This is a
complex mechanical system and is relatively slow, detecting one fan beam projection at a time.
The fasterspriral scansystem shown in figure 17 (b) has been recently developed where there
is a complete 360◦ ring of detectors and multiple x-ray sources are rotated inside the ring. Each
source is in a diffent plane, so for three sources this systemimages threeslicesin one rotation.
The subject is then moved through the system on a continiously moving table with each scan
forming a spiral pattern. This system is much faster, but is also much more expensive due to
the need for multiple x-ray sources and a complete detector ring. The data is also in a more
complex format so needing greater computer power to processit. Modern sytsem of the spiral
format can complete a scan of the human head in about 15→ 30 seconds.

(a) Conventional Scan (b) Spiral scan

Figure 17: Scanning geometry used in commercial tomographic scanners, (a) conventional scan
and (b) newer high speed sprial scan.

4For scanning of inert samples it is easier to rotate the object rather than the source and detector array.
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8.9 Fan Beam Reconstuction

Tomographic reconstruction in fan beam geometry is conceptually identical to the collimated
beam. The geometry of the fan beam system is shown in figure 18.So when the source is
rotated by angleβ with respect to the horizontal then the data collected is

rβ(γ)

whereγ is in the range−γM → γM being limited by the length of the array. This data can then
be collected for a whole range ofβ between 0→ 2π.

y
f(x,y)

xβ r  (   )γβ

γ
M

γ

D

S

Figure 18: Geometry of the fan beam tomography system.

The reconstrcution can then be implemented by filtered back projection combined with a simple
coordinate transformation5, and the reconstruction becomes, for each projection,

1. Scale the collectedrβ(γ) by cos(γ).

2. Convolve with a one-dimensional filter, to form a filtered version ofrβ(γ), denoted at
sβ(γ).

3. Backproject the data back across the rays of the equiangular fan as shown in figure 19

which is repeated for all anglesβ, now in the range 0→ 2π to form reconstruction̂f (x,y). With
modern computer system this type of reconstruction is easily performed inreal timewith the
scan speed being limited by the movement of the mechanical system. This system shown the
aberrations are the collimated beam system, the main problem being interpolation errors which
now occur as the filteredsβ(γ) is backprojected across the reconstruction at a limited range of
angles.

The alternative scheme is to collect the projection datarβ(γ) in thefan-beamgeometry and then
noting that each rayrβ(γ) is equivalent to a raypθ(t) is the collimated beam geometry with

θ = β− γ and t = D tanγ
5Details of this are beyond this coures.
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Figure 19: Backprojection in fan beam geometry.

whereD is the distance from the slit source to the centre of the object as shown in figure 18.
Therefore the projections collected infan-beamgeometry can beray sortedto give the equiv-
alentpθ(t) projections which can then be reconstrcuted by either the Fourier inversion or col-
limated back projection scheme. In practice this scheme hasexactly the same interpolation
errors as the fan-beam back projection and the additional computationally costly sorting of the
projection, so in pratcice does not have any advantage, and is actaully more computationally
expensive.

There are also a range of other more complex schemes which avoid the Fourier step by foru-
lating the whole reconstruction as a set of coupled linear equaitions that are then solved by
minimisation. These schemes are computationally much moreexpensive and not used rou-
tinely in scanner systems but as an alternative scheme when standard filtered backprojection
gives unexpected results.

8.10 Other Tomographic Imaging Systems

There are a range of other tomographic imaging systems used mainly in medical applications
but also in radio astronomy where the reconstrcution from a fan-beam radio telescope is identi-
cal to collimated beam projection with the image formed by Fourier inversion. In astronomical
radio interferometry, which consists of taking coherent signal from two movable radio tele-
scopes theimageis also collected in Fourier space butone spatial frequency at a timebeing
given by the separation between the telescopes. Again the image is formed by Fourier inversion
but now with a very sparcely sampled Fourier space.

The main tomographic systems are used in medical imaging, the two most common being
magnetic resonance imagingandpositorn emission tomographywhich are outlined in the next
two sections.

8.10.1 Magnetic Resonance Imaging

This system used the nuclear magnetic resonance of protons in hydrogen as an imaging system.
The proton spins are aligned with a very large magnetic field,several Tesla, and when then
decay they give out small amounts of eletro-magnetic radiation that cen be detetced by exetrnal
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coils. This has the effect of measureing local water content6. The location of the measuresment
is controlled by varying the gradient of the magnetic field, and results on the meausuremants
being averaged along line through the object, so its is effectively a tomographic technique using
the same reconstrcution scheme as discussed for x-ray computer tomography. Typical MRI
images are shown in figure 20 which can be used to give horizontal or vertical scan, which as
fro x-ray images, can then be formed into full three-dimensional models by further processing.

(a) Horizontal Scan (b) Vertical scan

Figure 20: Typical MRI images of the human head, (a) horizontal section, and (b) vertical
section.

MRI images shown excellent detail of soft tissue being but rather poor contrast in bone which
has a low water content. It is therefore a complementary techniques to x-ray tomography, and is
also muchsaferfor the patient which no know radiological effect. However the data collection
is much slower and the initial cost and running cost of the scanner are many times that of the
x-ray system .

8.10.2 Positron Emission Tomography

In this system the subject is injected with short lived radioisotope, usually15O7 , which decays
by positron emission, which in turn annihilates with alocalelectron to givetwoγ-rays of energy
511 Mev travelling in opposite directions. If the subject isthe surrounded by a ring of detectors
as shown in figure 21 (a), then a simultaneous detection of a pair of γ-rays of the correct energy
in detectorsA andB means that ae+ + e− annihilation occured on the line betweenA → B.
When data is collected for a long period it will thus give theaveragenumber of annihilations
along the line between any two detectors, which is again tomographic data collection. This
can then be reconstrcuted to form a slice image as shown in figure 21 (b) shown annihilation
activity. In this scheme the oxygen isotope accumulates thein active regions where cell are
taking up oxygen, so if applied to the brain, will give a imageof brain activity. If the system is
run in real time it can therefore let you see thebrain thinking.

This scheme has a number of technical problems, maining the number of annihilations is small,
so collected data is severly corrupted by Poisson noise, which results is a rather noise reconstr-
cution. The image resolution is also fundamentally limitedby the mean free path of the emitted

6The decay time are also influenced by their local environment, which allows the imaging system to be tuned
to measure different local parameters.

711C, 13N and18F are also possible but less commonly used.
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Figure 21: Layout and typical image from positron emission tomography (PET) systems.

positron before thee+ +e− annihilation occurs. In the brain this is typically 1→ 2 mm, so giv-
ing an effective resoluition limit of about 2 mm, being about×10 poorer that the best modern
x-ray or MRI systems.

The other major technical problem is that15O does not occur naturally and has a half-life of
only 20 minutes. It therefore has to be produced, by borbardment of water in a particle acceler-
ator, injected into the subject and the image taken in typically 20 → 30 minutes. This means a
particle accelatator has to locatednext doorto the scanner and typically dedicated to the imag-
ing system with15O prepared for each scan. This make whole process extremenlyexpensive
bot to install and run; it also needs a very large facility to house the particle accelerator. As a
result there are only a handful systems, currently four in the UK8.

9 Summary

This section contains a description of tomographic imagingand the basic schemes used to form
images.

• Basic concepts of tomographic imaging.

• Collimated beam projection.

• Fourier inversion theorem

• Interpolation problems and issues.

• Filtered back projection for collimated beam reconstruction.

• Pratcical systems and problems.

• Fan beam reconstrcution.

• Other tomographic imaging systems.

8as of 2003
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