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Topic 2: Scalar Diffraction

Aim: Covers Scalar Diffraction theory to derive Rayleigh-Sommerfled
diffraction. Take approximations to get Kirchhoff and Fresnel approx-
imations.

Contents:

1. Preliminary Theory.

2. General propagation between two planes.

3. Kirchhoff Diffraction

4. Fresnel Diffraction

5. Summary
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Scalar Wave Theory

Light is really a vector electomagnetic wave with E and B field linked
by Maxwell’s Equations.

Full solution only possible in limited cases, so we have to make as-
sumptions and approximations.

Assume:
Light field can be approximated by a complex scalar potential. (am-
plitude)

Valid for:
Apertures and objects � λ, (most optical systems).

NOT Valid for:
Very small apertures, Fibre Optics, Planar Wave Guides, Ignores Po-
larisation.

Also Assume:
Scalar potential is a linear super-position of monochromatic compo-
nents. So theory only valid for Linear Systems, (refractive index does
not depend on wavelength).
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Scalar Potentials

For light in free space the E and B field are linked by

∇:E = 0
∇:B = 0

∇^B = ε0µ0
∂E
∂t

∇^E = �
∂B
∂t

which, for free space, results in the “Wave Equation” given by

∇2E�
1
c2

∂2E
∂t2 = 0

Assume light field represented by scalar potential Φ(r ; t)which MUST
also obey the “Wave Equation”, so:

∇2Φ�
1
c2

∂2Φ
∂t2 = 0

Write the Component of scalar potential with angular frequency ω as

Φ(r ; t) = u(r)exp(ıωt)

then substituting for Φ we get that,

[∇2+κ2]u(r) = 0

where κ = 2π=λ or wave number.

So that u(r) must obey Helmholtz Equation, (starting point for Scalar
Wave Theory).
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Diffraction Between Planes

u(x,y;0) u(x,y;z)

1
P

z

yzy

x

0

0
P

x

In P0 the 2-D scalar potential is:

u(x;y;0) = u0(x;y)

where in plane P1 the scalar potential is:

u(x;y;z)

where the planes are separated by distance z.

Problem: Given u0(x;y) in plane P0 we want to calculate in u(x;y;z)
is any plane P1 separated from P0 by z.

Looking for a 2-D Scalar Solution to the full wave equation.
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Fourier Transform Approach

Take the 2-D Fourier Transform in the plane, wrt x;y. so in plane P1
we get

U(u;v;z) =
Z Z

u(x;y;z)exp(�ı2π(ux+vy))dxdy

since we have that

u(x;y;z) =
Z Z

U(u;v;z)exp(ı2π(ux+vy))dudv

then if we know U(u;v;z) in any plane, then we can easily find
u(x;y;z) the required amplitude distribution.

The amplitude u(x;y;z) is a Linear Combination of term of

U(u;v;z)exp(ı2π(ux+vy))

These terms are Orthogonal (from Fourier Theory),

So each of these terms must individually obey the Helmholtz Equa-
tion.

Note: the term:

U(u;v;z)exp(ı2π(ux+vy))

in a Plane Wave with Amplitude U(u;v;z) and Direction (u=κ;v=κ),
where κ = 2π=λ.
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Propagation of a Plane Wave

From Helmholtz Equation we have that

[∇2+κ2]U(u;v;z)exp(ı2π(ux+vy)) = 0

Noting that the exp() terms cancel, then we get that

∂2U(u;v;z)
∂z2 +4π2

�
1
λ2�u2�v2

�
U(u;v;z) = 0

so letting

γ2 =
1
λ2�u2�v2

then we get the relation that

∂2U
∂z2

+(2πγ)2U = 0 8u;v

With the condition that

U(u;v;0) =U0(u;v) = F fu0(x;y)g

we get the solution that

U(u;v;z) =U0(u;v)exp(ı2πγz)

This tells us how each component of the Fourier Transform propa-
gates between plane P0 and plane P1, so:

u(x;y;z) =
Z Z

U0(u;v)exp(ı2πγz)exp(ı2π(ux+vy))dudv

which is a general solution to the propagation problems valid for all
z.
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Free Space Propagation Function

Each Fourier Component (or Spatial Frequency) propagates as:

U(u;v;z) =U0(u;v)exp(ı2πγz)

Define: Free Space Propagation Function

H (u;v;z) = exp(ıπγz)

so we can write:

U(u;v;z) =U0(u;v)H (u;v;z)

Look at the form of H (u;v;z).

u2+v2+ γ2 =
1
λ2

Case 1: If u2+v2� 1=λ2 then γ is REAL

H (u;v) Phase Shift

so all spatial frequency components passed with Phase Shift.

Case 2: If u2+v2 > 1=λ2 them γ is IMAGINARY

H (u;v) = exp(�2πjγjz)

So Fourier Components of U0(u;v) with u2+ v2 > 1=λ2 decay with
Negative Exponential. (evanescent wave)
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Frequency Limit for Propagation

In plane P1 where z� λ then the negative exponential decay will
remove high frequency components.

U(u;v;z) = 0 u2+v2 > 1=λ2

so Fourier Transform of u(x;y;z) is of limited extent.

Maximum spatial frequency when u= 1=λ, this corresponds to a grat-
ing with period λ.

d
θ

dsinθ = nλ for d > λ

f

d

No diffraction when d < λ. Information not transferred to plane P1.
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Convolution Relation

We have that

U(u;v;z) = H (u;v;z)U0(u;v;z)

so by the Convolution Theorem, we have that

u(x;y;z) = h(x;y;z)�u0(x;y;z)

With u(x;y;z) the distribution in P1 due to u0(x;y;z) in P0.

We then have that

h(x;y;z)=
Z Z

exp

u2+v2<1=λ2

(ı2πγz)exp(ı2π(ux+vy)) dudv

where

γ =
r

1
λ2
�u2+v2

“It-Can-Be-Shown” (with considerable difficulty), that

h(x;y;z) = �
2π
λ2

∂
∂z

�
exp(ıκr)

κr

�

where be have that

r2 = x2+y2+z2 and κ =
2π
λ

we therefore get that

h(x;y;z) =
1
λ

�
1
κr
� ı

��z
r

� exp(ıκr)
r

which is known as “The Impulse Response Function for Free Space
Propagation”
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Point Object

u(x,y;z)

y
x

z

a x,yδ(      )

y

x
r

0

P

P

0

1

In P0 we have a Delta Function, so:

u0(x;y) = aδ(x;y)

So in plane P1 we have

u(x;y;z) = ah(x;y;z)

=
a
λ

�
1
κr
� ı

��z
r

� exp(ıκr)
r

where r is the distance from:

(0;0;0)) (x;y;z)

So the intensity in plane P1 is given by:

i(x;y;z) =
b2

r2

�
1

κ2r2 +1

��z
r

�2

where the λ2 has been incorperated into the constant b.
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Shape of Function
The shape of i(x;0;z) is shown below:
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i(x,1)
i(x,2)
i(x,3)
i(x,4)

for z= λ;2λ;3λ;4λ, x-scale in λs.

Compare with a isolated 3-D point source, spherical expanding waves,
so intensity in plane at distance z of:

I(x;y;z) =
b2

r2
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Note We have a 2-D Delta Function, (whole in a screen), and NOT
an 3-D point source.
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Full Expression

The full convolution expression is

u(x;y;z) =
Z Z

P0

u0(s; t)h(x�s;y� t;z)dsdt

where s; t are variables in plane P0

The h() term will contain terms of the form

(x�s)2+(y� t)2+z2 = l2

so l is Distance from (s; t;0)) (x;y;z)

u(s,t;0)

z

u(x,y;z)

l

s

t

P
0 1

P

z

x
y

0

Full Expression is

u(x;y;z) =
1
λ

Z Z
P0

u0(s; t)

�
1
κl
� ı

�
exp(ıκl)

l

�z
l

�
dsdt

Rayleigh-Sommerfeld Diffraction Equation
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Kirchoff Diffraction

Look at Impulse Response Function:

h(x;y;z) =
1
λ

�
1
κr
� ı

��z
r

� exp(ıκr)
r

Most Practical cases, P0 and P1 separated by MANY wavelength,

) z� λ ) r � λ

Approximate the term: �
1
κr
� ı

�
� �ı

so that

h(x;y;z)�
1
ıλ

�z
r

� exp(ıκr)
r

Look at Terms

exp(ıκr)
r

Spherically expanding wave from point (0;0;0)

z
r

“Obliquity Factor” which forces propagation in z direction. (In Good-
man’s notation the obliquity is written as a cos() term).

The other terms are just constants.
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Note: For 3-D point source, get expanding spherical wave obliquity
factor results from 2-D source in a plane.

Impulse Response Function: Spherical Wave with directional weight-
ing term.

Model: Each point in P0 acts a source of impulse response functions,
that sum is P1.

h(x;y;z) = Spherical Wave
hz
r

i
This is Hygen’s Secondary Wavelet (weighted by obliquity factor).

Hygen’s Secondary Wavelets

Model: Each point on the wavefront gives rise to Spherical Waves,

h(x;y;z) =
exp(ıκr)

r
Add postulate that “wave propagate in positive z direction”.

Kirchhoff , Hygen’s
hz
r

i
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Kirchhoff Diffraction Integral

In Rayleigh-Sommerfeld integral,

z� λ ) l � λ

make the approximation that�
1
κl
� ı

�
� �ı

so we get that

u(x;y;z) =
1
ıλ

Z Z
P0

u0(s; t)
exp(ıκl)

l

�z
l

�
dsdt

which is valid (1%), z> 20λ.

Typical starting point for optical calculations.

Look at z=l factor:

0
P l

z

1
P

x

s
zθ

so that
z
l
= cosθ

Same expression as in books [eg. Goodman page 52, equation (3-
51)]
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Fresnel Approximation

Assume extend of P0 and P1� z

x z x

z

PP

r

0 1

So we have that

jxj& jyj � z

We have Kirchhoff impulse response

h(x;y;z) =
1
ıλ

�z
r

� exp(ıκhr)
r

Which we can write as:

h(x;y;z) = A(x;y;z)exp(ıκr)

where the amplitude

A(x;y;z) =
1
ıλ

z
r2

Since x& y<< z, we can expand r as

r = z

�
1+

x2+y2

z2

� 1
2

� z+
x2+y2

2z
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Amplitude Term: First Order approx:

r � z ) A(x;y;z)�
1

ıλz

Phase Term: Second Order approx:

r � z+
x2+y2

2z

exp(ıκr) � exp(ıκz)exp

�
ı

κ
2z
(x2+y2)

�

So the Fresnel Approximation is that

h(x;y;z)�
exp(ıκz)

ıλz
exp

�
ı

κ
2z
(x2+y2)

�

Fresnel Approximations

1) Replace Spherical waves by Parabolic Waves

2) Ignore Obliquity factor.

NOTE: only valid

jxj& jyj � z ) Small Objects

This is also known as “Paraxial Approximation”. Useful in many prac-
tical systems.

Use in the rest of the course
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Fresnel Diffraction

We have that

u(x;y;z) = h(x;y;z)�u0(x;y)

=
exp(ıκz)

ıλz

Z Z
u0(s; t)exp

�
ı

κ
2z

�
(x�s)2+(y� t)2

��
dsdt

This we can expand to get the

1z }| {
1

ıλz
exp(ıκz)

2z }| {
exp

�
ı

κ
2z

(x2+y2)

�
�

Z Z 4z }| {
u0(s; t)exp

�
ı

κ
2z

(s2+ t2)

�
exp

�
�ı

κ
z
(sx+ ty)

�
dsdt| {z }

3

Look the FOUR terms

1. Absolute amplitude and phase, depends only on z (constant
which is not normally important).

2. Parabolic phase term, no effect on intensity.

3. Fourier Transform scaled by κ=z

4. Scalar distribution in P0 weighted by parabolic phase term.

Fresnel Diffraction) Fourier Transform weighted by parabolic phase
term [+ Extra phase and constants]
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In Fourier Space

In Fourier Space we have

U(u;v;z) = H (u;v;z)U0(u;v)

so we have that

H (u;v;z) =
1

ıλz
exp(ıκz)

Z Z
exp

�
ı

κ
2z

(x2+y2)

�
exp(�ı2π(ux+vy))dxdy

This can be separated into 2 integrals in x and y, and with identity

Z ∞

�∞
exp(�bx2)exp(ıax)dx=

r
π
b

exp

�
�

a2

4b

�

It-Can-be-Shown that

H(u;v;z) = exp(ıκz)exp
�
ıπλz(u2+v2)

�
which is again a parabolic term.

Fresnel diffraction)Multiplication in Fourier plane by parabolic phase
term.
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Summary

Scalar Wave solution for prapagation between two plane:

Full Solution ) Rayleigh-Sommerfeld

If distance between planes > a “few wavelengths” then

Scaler Kirchoff Diffraction

This is Hygen’s Secondary Spherical wavelets plus obliquity factor
due to 2-D whole in plane.

If distance between planes Large and planes are Small make small
angle approximation to get

Fresnel Diffraction

which replaces Spherical waves with Parabolic and ignores obliquity
factor.

Fresnel Diffraction will be used for the rest of this course.
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