

Topic 2: Scalar Diffraction

Aim: Covers Scalar Diffraction theory to derive Rayleigh-Sommerfled diffraction. Take approximations to get Kirchhoff and Fresnel approximations.

Contents:

- 1. Preliminary Theory.
- 2. General propagation between two planes.
- 3. Kirchhoff Diffraction
- 4. Fresnel Diffraction
- 5. Summary

Scalar Wave Theory

Light is really a vector electomagnetic wave with **E** and **B** field linked by Maxwell's Equations.

Full solution only possible in limited cases, so we have to make assumptions and approximations.

Assume:

Light field can be approximated by a complex scalar potential. (amplitude)

Valid for:

Apertures and objects $\gg \lambda$, (most optical systems).

NOT Valid for:

Very small apertures, Fibre Optics, Planar Wave Guides, Ignores Polarisation.

Also Assume:

Scalar potential is a *linear* super-position of monochromatic components. So theory only valid for Linear Systems, (refractive index does not depend on wavelength).

Scalar Potentials

For light in free space the **E** and **B** field are linked by

$$
\nabla \cdot \mathbf{E} = 0
$$

\n
$$
\nabla \cdot \mathbf{B} = 0
$$

\n
$$
\nabla \wedge \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}
$$

\n
$$
\nabla \wedge \mathbf{E} = \Leftrightarrow \frac{\partial \mathbf{B}}{\partial t}
$$

which, for free space, results in the "Wave Equation" given by

$$
\nabla^2 \mathbf{E} \Leftrightarrow \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0
$$

Assume light field represented by scalar potential $\Phi(\mathbf{r}, t)$ which MUST also obey the "Wave Equation", so:

$$
\nabla^2\Phi\Leftrightarrow\!\frac{1}{c^2}\!\frac{\partial^2\Phi}{\partial t^2}=0
$$

Write the Component of scalar potential with angular frequency ω as

$$
\Phi(\mathbf{r},t) = u(\mathbf{r}) \exp(i\omega t)
$$

then substituting for Φ we get that,

$$
[\nabla^2 + \kappa^2]u(\mathbf{r}) = 0
$$

where $\kappa = 2\pi/\lambda$ or wave number.

So that *u*(**r**) must obey Helmholtz Equation, (starting point for Scalar Wave Theory).

In P_0 the **2-D** scalar potential is:

 $u(x, y; 0) = u_0(x, y)$

where in plane P_1 the scalar potential is:

 $u(x, y; z)$

where the planes are separated by distance *z*.

Problem: Given $u_0(x, y)$ in plane P_0 we want to calculate in $u(x, y; z)$ is any plane P_1 separated from P_0 by z .

Looking for a **2-D Scalar Solution** to the full wave equation.

Fourier Transform Approach

Take the 2-D Fourier Transform in the plane, wrt x, y . so in plane P_1 we get

$$
U(u, v; z) = \iint u(x, y; z) \exp(\Leftrightarrow 2\pi(ux + vy)) dx dy
$$

since we have that

$$
u(x, y; z) = \iint U(u, v; z) \exp(i2\pi(ux + vy)) du dv
$$

then if we know $U(u, v; z)$ in any plane, then we can easily find $u(x, y; z)$ the required amplitude distribution.

The amplitude $u(x, y; z)$ is a Linear Combination of term of

 $U(u, v; z)$ exp $(i2\pi(ux + vy))$

These terms are **Orthogonal** (from Fourier Theory),

So **each** of these terms **must** individually obey the Helmholtz Equation.

Note: the term:

```
U(u, v; z) exp (i2\pi(ux + vy))
```
in a **Plane Wave** with Amplitude $U(u, v; z)$ and Direction $(u/\kappa, v/\kappa)$, where $\kappa = 2\pi/\lambda$.

Propagation of a Plane Wave

From Helmholtz Equation we have that

 $[\nabla^2 + \kappa^2]U(u, v; z) \exp(i2\pi(ux + vy)) = 0$

Noting that the exp() terms cancel, then we get that

$$
\frac{\partial^2 U(u,v;z)}{\partial z^2} + 4\pi^2 \left(\frac{1}{\lambda^2} \Leftrightarrow u^2 \Leftrightarrow v^2\right) U(u,v;z) = 0
$$

so letting

$$
\gamma^2=\frac{1}{\lambda^2} \hskip1pt{\Leftrightarrow} u^2 \hskip1pt{\Leftrightarrow} v^2
$$

then we get the relation that

$$
\frac{\partial^2 U}{\partial z^2} + (2\pi \gamma)^2 U = 0 \quad \forall u, v
$$

With the condition that

$$
U(u, v; 0) = U_0(u, v) = F\{u_0(x, y)\}\
$$

we get the solution that

$$
U(u, v; z) = U_0(u, v) \exp(i2\pi\gamma z)
$$

This tells us how each component of the Fourier Transform propagates between plane P_0 and plane P_1 , so:

$$
u(x, y; z) = \iint U_0(u, v) \exp(i2\pi \gamma z) \exp(i2\pi (ux + vy)) du dv
$$

which is a general solution to the propagation problems valid for **all** *z*.

Free Space Propagation Function

Each Fourier Component (or Spatial Frequency) propagates as:

 $U(u, v; z) = U_0(u, v) \exp(i2\pi v z)$

Define: Free Space Propagation Function

$$
H(u, v; z) = \exp(i\pi\gamma z)
$$

so we can write:

$$
U(u, v; z) = U_0(u, v)H(u, v; z)
$$

Look at the form of $H(u, v; z)$.

$$
u^2 + v^2 + \gamma^2 = \frac{1}{\lambda^2}
$$

Case 1: If $u^2 + v^2 \le 1/\lambda^2$ then γ is **REAL**

H (*u*; *v*) Phase Shift

so **all** spatial frequency components passed with Phase Shift.

Case 2: If $u^2 + v^2 > 1/\lambda^2$ them γ is **IMAGINARY**

$$
H(u,v) = \exp(\Leftrightarrow 2\pi |\gamma|z)
$$

So Fourier Components of $U_0(u, v)$ with $u^2 + v^2 > 1/\lambda^2$ decay with Negative Exponential. (evanescent wave)

Frequency Limit for Propagation

In plane P_1 where $z \gg \lambda$ then the negative exponential decay will remove high frequency components.

 $U(u, v; z) = 0$ $u^2 + v^2 > 1/\lambda^2$

so Fourier Transform of $u(x, y; z)$ is of limited extent.

Maximum spatial frequency when $u = 1/\lambda$, this corresponds to a grating with period $λ$.

 $d \sin \theta = n\lambda$ for $d > \lambda$

No diffraction when $d < \lambda$. Information not transferred to plane P_1 .

Convolution Relation

We have that

 $U(u, v; z) = H(u, v; z) U_0(u, v; z)$

so by the Convolution Theorem, we have that

$$
u(x,y;z) = h(x,y;z) \odot u_0(x,y;z)
$$

With $u(x, y; z)$ the distribution in P_1 due to $u_0(x, y; z)$ in P_0 .

We then have that

$$
h(x,y;z) = \iint_{u^2+v^2<1/\lambda^2} \exp(i2\pi \gamma z) \exp(i2\pi(ux+vy)) du dv
$$

where

$$
\gamma = \sqrt{\frac{1}{\lambda^2} \Leftrightarrow u^2 + v^2}
$$

"It-Can-Be-Shown" (with considerable difficulty), that

$$
h(x, y; z) = \Leftrightarrow \frac{2\pi}{\lambda^2} \frac{\partial}{\partial z} \left(\frac{\exp(i\kappa r)}{\kappa r} \right)
$$

where be have that

$$
r^2 = x^2 + y^2 + z^2 \quad \text{and} \quad \kappa = \frac{2\pi}{\lambda}
$$

we therefore get that

$$
h(x, y; z) = \frac{1}{\lambda} \left[\frac{1}{\kappa r} \Leftrightarrow l \right] \left(\frac{z}{r} \right) \frac{\exp(i\kappa r)}{r}
$$

which is known as "The Impulse Response Function for Free Space Propagation"

Point Object

In P_0 we have a Delta Function, so:

$$
u_0(x,y)=a\delta(x,y)
$$

So in plane P_1 we have

$$
u(x, y; z) = ah(x, y; z)
$$

= $\frac{a}{\lambda} \left[\frac{1}{\kappa r} \Leftrightarrow l \right] \left(\frac{z}{r} \right) \frac{\exp(i\kappa r)}{r}$

where *r* is the distance from:

$$
(0,0;0) \Rightarrow (x,y;z)
$$

So the intensity in plane P_1 is given by:

$$
i(x, y; z) = \frac{b^2}{r^2} \left[\frac{1}{\kappa^2 r^2} + 1 \right] \left(\frac{z}{r} \right)^2
$$

where the λ^2 has been incorperated into the constant *b*.

Shape of Function

The shape of $i(x, 0; z)$ is shown below:

for $z = \lambda$, 2λ , 3λ , 4λ , *x*-scale in λ s.

Compare with a isolated 3-D point source, spherical expanding waves, so intensity in plane at distance *z* of:

$$
I(x, y; z) = \frac{b^2}{r^2}
$$

Full Expression

The full convolution expression is

$$
u(x, y; z) = \iint_{P_0} u_0(s, t) h(x \Leftrightarrow s, y \Leftrightarrow t; z) \, ds \, dt
$$

where s, t are variables in plane P_0

The *h*() term will contain terms of the form

$$
(x \Leftrightarrow s)^2 + (y \Leftrightarrow t)^2 + z^2 = l^2
$$

so *l* is Distance from $(s,t;0) \Rightarrow (x,y;z)$

Full Expression is

$$
u(x, y; z) = \frac{1}{\lambda} \iint_{P_0} u_0(s, t) \left[\frac{1}{\kappa l} \Leftrightarrow l \right] \frac{\exp(i \kappa l)}{l} \left(\frac{z}{l} \right) ds dt
$$

Rayleigh-Sommerfeld Diffraction Equation

Kirchoff Diffraction

Look at Impulse Response Function:

$$
h(x, y; z) = \frac{1}{\lambda} \left[\frac{1}{\kappa r} \Leftrightarrow l \right] \left(\frac{z}{r} \right) \frac{\exp(i\kappa r)}{r}
$$

Most Practical cases, P_0 and P_1 separated by MANY wavelength,

 $\Rightarrow z \gg \lambda \Rightarrow r \gg \lambda$

Approximate the term:

$$
\left[\frac{1}{\kappa r}\!\Leftrightarrow_l\right] \approx \Leftrightarrow
$$

so that

$$
h(x, y; z) \approx \frac{1}{i\lambda} \left(\frac{z}{r}\right) \frac{\exp(i\kappa r)}{r}
$$

Look at Terms

exp(*ı*κ*r*) *r*

Spherically expanding wave from point $(0,0;0)$

"Obliquity Factor" which forces propagation in *z* direction. (In Goodman's notation the obliquity is written as a cos() term).

z

r

The other terms are just constants.

Note: For 3-D point source, get expanding spherical wave obliquity factor results from 2-D source in a plane.

Impulse Response Function: Spherical Wave with directional weighting term.

Model: Each point in P_0 acts a source of impulse response functions, that sum is P_1 .

$$
h(x, y; z) = \text{Spherical Wave}\left[\frac{z}{r}\right]
$$

This is **Hygen's Secondary Wavelet** (weighted by obliquity factor).

Hygen's Secondary Wavelets

Model: Each point on the wavefront gives rise to Spherical Waves,

$$
h(x, y; z) = \frac{\exp(i\kappa r)}{r}
$$

Add postulate that "wave propagate in positive *z* direction".

Kirchhoff
$$
\Leftrightarrow
$$
 Hygen's $\left[\frac{z}{r}\right]$

Kirchhoff Diffraction Integral

In Rayleigh-Sommerfeld integral,

 $z \gg \lambda \Rightarrow l \gg \lambda$

make the approximation that

$$
\left[\frac{1}{\kappa l}\hskip.03cm \Leftrightarrow \hskip-.03cm \iota\right]\hskip.03cm \approx \hskip-.03cm \Leftrightarrow \hskip-.03cm \iota
$$

so we get that

$$
u(x, y; z) = \frac{1}{i\lambda} \iint_{P_0} u_0(s, t) \frac{\exp(i\kappa l)}{l} \left(\frac{z}{l}\right) ds dt
$$

which is valid (1%), *z* > 20λ.

Typical starting point for optical calculations.

Look at z/l factor:

so that

$$
\frac{z}{l} = \cos \theta
$$

Same expression as in books [eg. Goodman page 52, equation (3- 51)]

Fresnel Approximation

Assume extend of P_0 and $P_1 \ll z$

So we have that

 $|x| \& |y| \ll z$

We have Kirchhoff impulse response

 $h(x, y; z) = \frac{1}{2} (z^2 - z^2)$ *ı*λ \angle *z* \angle e *r* χ exp(*i*khr) *r*

Which we can write as:

$$
h(x, y; z) = A(x, y; z) \exp(i\kappa r)
$$

where the amplitude

$$
A(x, y; z) = \frac{1}{i\lambda} \frac{z}{r^2}
$$

Since $x \& y \ll z$, we can expand *r* as

$$
r = z \left(1 + \frac{x^2 + y^2}{z^2} \right)^{\frac{1}{2}} \approx z + \frac{x^2 + y^2}{2z}
$$

Amplitude Term: First Order approx:

$$
r \approx z \Rightarrow A(x, y; z) \approx \frac{1}{i\lambda z}
$$

Phase Term: Second Order approx:

$$
r \approx z + \frac{x^2 + y^2}{2z}
$$

exp(*i*kr) $\approx \exp(i\kappa z) \exp\left(i\frac{\kappa}{2z}(x^2 + y^2)\right)$

So the Fresnel Approximation is that

$$
h(x, y; z) \approx \frac{\exp(i\kappa z)}{i\lambda z} \exp\left(i\frac{\kappa}{2z}(x^2 + y^2)\right)
$$

Fresnel Approximations

- 1) Replace Spherical waves by Parabolic Waves
- 2) Ignore Obliquity factor.

NOTE: only valid

 $|x| \& |y| \ll z \Rightarrow$ Small Objects

This is also known as "Paraxial Approximation". Useful in many practical systems.

Use in the rest of the course

Fresnel Diffraction

We have that

$$
u(x, y; z) = h(x, y; z) \odot u_0(x, y)
$$

=
$$
\frac{\exp(\iota \kappa z)}{\iota \lambda z} \iint u_0(s, t) \exp \left[\iota \frac{\kappa}{2z} \left((x \Leftrightarrow s)^2 + (y \Leftrightarrow t)^2 \right) \right] ds dt
$$

This we can expand to get the

$$
\frac{1}{i\lambda z} \exp(i\kappa z) \exp\left[i\frac{\kappa}{2z}(x^2 + y^2)\right] \times
$$

$$
\underbrace{\iint u_0(s,t) \exp\left[i\frac{\kappa}{2z}(s^2 + t^2)\right]}_{3} \exp\left[\Leftrightarrow \frac{\kappa}{z}(sx + ty)\right] ds dt
$$

Look the **FOUR** terms

- 1. Absolute amplitude and phase, depends only on *z* (constant which is not normally important).
- 2. Parabolic phase term, no effect on intensity.
- 3. Fourier Transform scaled by κ/z
- 4. Scalar distribution in P_0 weighted by parabolic phase term.

Fresnel Diffraction \Rightarrow Fourier Transform weighted by parabolic phase term [+ Extra phase and constants]

In Fourier Space

In Fourier Space we have

$$
U(u, v; z) = H(u, v; z) U_0(u, v)
$$

so we have that

$$
H(u, v; z) = \frac{1}{i\lambda z} \exp(i\kappa z)
$$

$$
\iint \exp\left[i\frac{\kappa}{2z}(x^2 + y^2)\right] \exp(\Leftrightarrow 2\pi(ux + vy)) \,dxdy
$$

This can be separated into 2 integrals in *x* and *y*, and with identity

$$
\int_{-\infty}^{\infty} \exp(\Leftrightarrow bx^2) \exp(iax) dx = \sqrt{\frac{\pi}{b}} \exp\left[\Leftrightarrow \frac{a^2}{4b}\right]
$$

It-Can-be-Shown that

$$
H(u, v; z) = \exp(i\kappa z) \exp(i\pi \lambda z (u^2 + v^2))
$$

which is again a parabolic term.

Fresnel diffraction \Rightarrow Multiplication in Fourier plane by parabolic phase term.

Summary

Scalar Wave solution for prapagation between two plane:

Full Solution \Rightarrow Rayleigh-Sommerfeld

If distance between planes $> a$ "few wavelengths" then

Scaler Kirchoff Diffraction

This is Hygen's Secondary Spherical wavelets plus obliquity factor due to 2-D whole in plane.

If distance between planes Large **and** planes are Small make small angle approximation to get

Fresnel Diffraction

which replaces Spherical waves with Parabolic and ignores obliquity factor.

Fresnel Diffraction will be used for the rest of this course.

