Personal tools
You are here: Home Library Publications 2007
Document Actions

2007

Optical tweezer micromanipulation of filamentous fungi
Optical tweezers have been little used in experimental studies on filamentous fungi. We have built a simple, compact, easy-to-use, safe and robust optical tweezer system that can be used with brightfield, phase contrast, differential interference contrast and fluorescence optics on a standard research grade light microscope. We have used this optical tweezer system in a range of cell biology applications to trap and micromanipulate whole fungal cells, organelles within cells, and beads. We have demonstrated how optical tweezers can be used to: unambiguously determine whether hyphae are actively homing towards each other; move the Spitzenkorper and change the pattern of hyphal morphogenesis; make piconewton force measurements; mechanically stimulate hyphal tips; and deliver chemicals to localized regions of hyphae. Significant novel experimental findings from our study were that germ tubes generated significantly smaller growth forces than leading hyphae, and that both hyphal types exhibited growth responses to mechanical stimulation with optically trapped polystyrene beads. Germinated spores that had been optically trapped for 25min exhibited no deleterious effects with regard to conidial anastomosis tube growth, homing or fusion.
Experimentally manipulating fungi with optical tweezers
A short review of the use of optical tweezers in fungal cell biological research is provided. First, we describe how optical tweezers work. Second, we review how they have been used in various experimental live-cell studies to manipulate intracellular organelles, hyphal growth and branching, and whole cells. Third, we indicate how optically trapped microbeads can be used for the localized delivery of chemicals or mechanical stimulation to cells, as well as permitting measurements of the growth forces generated by germ tubes. Finally, the effects of optical trapping on fungal cell viability and growth are assessed.
Emulsification of Partially Miscible Liquids Using Colloidal Particles: Nonspherical and Extended Domain Structures
We present microscopy studies of particle-stabilized emulsions with unconventional morphologies. The emulsions comprise pairs of partially miscible fluids and are stabilized by colloids. Alcohol-oil mixtures are employed; silica colloids are chemically modified so that they have partial wettability. We create our morphologies by two distinct routes: starting with a conventional colloid-stabilized emulsion or starting in the single-fluid phase with the colloids dispersed. In the first case temperature cycling leads to the creation of extended fluid domains built around some of the initial fluid droplets. In the second case quenching into the demixed region leads to the formation of domains which reflect the demixing kinetics. The structures are stable due to a jammed, semisolid, multilayer of colloids on the liquid-liquid interface. The differing morphologies reflect the roles in formation of the arrested state of heterogeneous and homogeneous nucleation and spinodal decomposition. The latter results in metastable, bicontinuous emulsions with frozen interfaces, at least for the thin-slab samples, investigated here.